
 

 

  

Abstract: One opportunity in product development is to 
customize the product depending on the customer use-
case scenarios rather than using static product 
requirements. This is facilitated by the increasing 
capabilities of computer-aided design. However, the 
necessary formalization of the early design stage 
analysis-synthesis routines for an automated optimization 
to the use-case emerges as a challenging problem. To 
address this problem, an approach is presented which 
combines an optimization framework with a functional 
simulation model and a generative design approach 
(GDA) model. The GDA is based on the combination of a 
parametric geometry model and the generative exchange 
of parts of the model. While the functional model 
evaluates the objective function at hand, the GDA model 
ensures the physical feasibility.  
Key Words: design automation, optimization, 
generative design approach 

1. INTRODUCTION 

Product developments are driven by the fulfillment of 
a set of requirements, either strictly specified by a 
customer or through market analysis and the anticipation 
of the customer’s needs. Specified requirements often 
restrict the development and do not represent the optimal 
solution. A customization of a product to the customer’s 
needs upon a user-scenario analysis gives the developer a 
higher degree of freedom in the realization of a scenario-
specific solution. However, it also imposes a more 
dynamical and flexible necessary reaction to e.g. market 
situation changes or new customer needs [1, 2]. This leads 
to a high spectrum of possible solutions to user-scenarios 
tailored to the customer. Finding a solution to this kind of 
problem comes down to the balancing of what kind of 
respective solution meets the specific needs in which 
defined way [3].  

Typically, in product development, this is performed 
in an iterative process, where a set of characteristics of the 
potential solution is analyzed and the properties are 
compared to the requirements. This process is repeated 
until a suitable match for the requirements is found [4]. As 
even small geometric or functional changes can have a 
strong influence on these properties this design task can 

lead to a high number of necessary model changes and 
analysis routines. The actual transition of changes and 
model information into simulation tools for system design 
currently still relies on laborious manual transfer. The user 
himself has to perform model changes or analytical 
calculations, pass the models to Computer-Aided 
Engineering (CAE) tools like 3D modeling environments 
(e.g. CAD), Finite Element Analysis (FEA), or functional 
performance analysis. Therefore, the need for a new 
variant or changes to a product also leads to a high variety 
of these CAD and analysis models. A possibility to 
overcome this is the use of design automation, e.g. in the 
form of parameterized models. The reason why these tasks 
are still typically performed manually is the effort 
required to plan the parameters, their dependencies and 
the corresponding model structure in a parameterized 
model. Especially the connection of functional properties 
to geometric characteristics and the imposed restrictions 
results in a high managing effort without proper planning. 
Therefore, the more complex the geometry and the larger 
the assemblies, the more important it is to constrain model 
parameters and reference individual features to build 
robust CAD and analysis models [5–7]. 

Modeling languages like UML or SysML aim to give 
the user the possibility to model functions and their 
solutions [8]. Approaches like graph-based languages [9] 
even go as far as to implement geometric properties into 
the formalized modeling language and build-up a complex 
network of dependencies. However, these modeling 
languages either mainly focus on the product structure and 
only abstractly link sub-assemblies or parts with the actual 
functional outcome, or they are based on a discrete 
network which is rather inflexible upon changes. Thus, 
these modeling languages lack a detailed description of 
how the geometric model and the associated dependencies 
have to be built and connected to support an increasing 
design automation. 

The aim of the research in this paper is to present a 
method for the build-up of a robust geometry model, 
capable of adapting to necessary product variants in the 
iterative development cycles. Furthermore, the transfer of 
model parameters to a functional simulation environment 
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inside an automatic product optimization is given. The 
proposed method is based on the generative design 
approach (GDA) as a means of a model-based integration 
of constraints and dependencies. This approach uses a 
parametric geometry model as a template and gives the 
possibility to insert specific elements, adapting robustly to 
the template characteristics. The method is shown using 
an example of a business-to-business development of a 
coffee machine for high throughput. This coffee machine 
is specifically designed for the user-scenario of a hotel. 

2. THEORETICAL BACKGROUND 

In the product development the search for a solution, 
matching the requirements is a search in a distinct solution 
space. Whereas, a solution space describes all 
theoretically possible solutions for a task or set of 
requirements [10]. The beforehand described iterative 
process of analyzing characteristics and comparing the 
properties to the requirements is an exploration of this 
solution space. Several established approaches like the 
development process of the German VD2221 [11] use this 
idea throughout the stages of the development. Using a 
functional structure, the overall problem is sub-divided 
into smaller parts and related to sub-functions. The 
solution finding consists of defining single artifacts 
fulfilling the sub-functions and combining them.  

Those typical approaches can be described as process-
oriented, giving a processual way of the development, 
without a detailed description of the actual modeling work 
[12]. Another approach, which reverts this understanding 
is presented by Weber [5] consisting of the 
Characteristics-Property Modeling, which describes the 
product modeling part and a separate process model, the 
Property-Driven Development. This distinction is used in 
the analysis-synthesis routines used to update both models 
to the given design problem. Gradually, throughout these 
routines properties of a certain set of characteristics are 
adapted. By explicitly addressing the use of computer-
aided engineering tools and by defining the product 
development as a mathematical optimization problem, a 
certain stage of automation is supported [12, 13].  

A more functionally centered approach is given by 
Gero [14] with the Function-Behavior-Structure (FSB) 
modeling. This starts with the requirements (R), which are 
transformed in a first process into a function state space 
(F) and further into a behaviour state space (Be). Based on 
this, a structure (S) is synthesized, which is analyzed and 
a behaviour (Bs) is derived. In an evaluation (Bs) and (Be) 
are compared and the structure is documented (D), if a 
reformulation is necessary, the structure, the behaviour, or 
the functional state space is modified [14]. 

The Axiomatic Design method is based on a domain 
concept in which a distinction is made between the 
customer domain (attributes the customer is looking for), 
functional domain (functional requirements and 
constraints), physical domain (design parameters 
representing a design solution) and process domain 
(parameters and tolerances of the manufacturing process). 
The domains structure the development process and lead 

to iterative jumps between adjacent domains until a 
solution can be assigned exactly to a requirement [15]. 

In contrast to solution spaces, Gero [16] describes 
variation spaces in which known constructions can be 
adapted to new or changed requirements. Routine Design 
is used to describe activities in which parameters are 
adapted. Variation and adaptation constructions are 
described with Innovative (retaining material, function 
and essential form) and Creative Design (retaining the 
solution principle) [16]. Thus, Gero already postulated the 
use of parametrics and templates in the early 1990s [7]. 

System Dynamics (SD) is a tool to capture feedback 
processes, inventories and flows, time delays and other 
sources of dynamic complexity in systems. It supports the 
design and evaluation of new system structures and their 
consequences [17]. For this purpose, an SD model 
consists of in- and outflows that are controlled by valves 
and connect stocks. Stocks outside the system boundaries 
are integrated as sources or sinks. Further essential and 
linking elements of the model are control loops and 
parameters [18]. 

 In the approach of Kloock-Schreiber et al. [19], for 
the modeling of PSS solution spaces with SD, the main 
function of the PSS with the corresponding flows and 
control loops is first described. This is followed by the 
detailing, for the entire system, or in sub-models limited 
to individual system areas. 
While these approaches describe mainly a processual way 
of the exploration of the solution space, other approaches 
give a clearer description of the actual modeling work. A 
basic way for the automatic creation of variants is the use 
of the parametric design, where the ability of a CAD 
program to define parameters and combine them via 
constraints is used [20]. A parametric CAD model can 
represent different variants and is, therefore, able to span 
a solution space [21]. To build a solution space the 
knowledge must be explicitly implemented in digital 
prototypes. Besides the parameters of the models, 
mathematical and logical boundary conditions and 
constraints can be defined between them. Thus, a solution 
space is described by the designer by defining not only the 
product shape but also the variant design and the 
associated control and configuration concept for the 
components [20, 21] 

The defined parametric model requires the logical 
understanding of the geometry or assembly at hand and 
the transfer of this understanding into the parameters and 
constraints. While this does relieve the designer of 
repetitive tasks, it also means a high amount of model 
preparation and adjustment to the own problem [22].  

This is taken from the designer in the knowledge-
based approaches, where the product knowledge is stored 
beforehand and then generically used afterward [23–25]. 
A common way of automating the CAD model build-up 
and change is the definition of subparts of a geometry. La 
Rocca and van Tooren [26] propose the use of high-level 
primitives inside a knowledge-based system. These 
primitives are highly adaptable to the adjacent geometry 
of other primitives when completing the model. The 
proposed framework is based on an object-oriented 
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approach with a code-based integration of these 
primitives.  

Amadori et al. [27] use a similar approach, called 
“High-Level CAD templates” with the distinction of the 
creation and utilization inside a CAD environment. The 
method is shown in different use cases, ranging from a 
robot model to airplane design. Another approach is given 
by Schmidt and Rudolph [9] where a graph-based design 
language is used to automatically initiate models, which 
are usable in a high number of analysis programs. The idea 
is the abstraction of model parts and dependencies to a 
generic level, using e.g. UML as a modeling language. Via 
a compiler, these graphs are then translated back, with the 
possibility of generating a high number of variants in 
different respective model environments.  

Another approach based on the subdivision of the 
geometric entity is the generative design approach (GDA) 
[28] which uses high fidelity model parts to combine these 
in an assembly model. These parts are adaptable to the 
surrounding via the information and dependencies stored 
internally in the parts and in interfaces connecting these 
parts. The advantage is the separation of local 
dependencies into the respective submodels and the 
limitation of global dependencies. 

What all of these approaches have in common is that 
the geometry model and its underlying properties are built 
to fulfill an objective function, mainly dependent on the 
geometry like the weight, mechanical stresses or a flow 
optimization. Although functional characteristics also 
may be an objective, this is only expressed through the 
geometric continuity of the model. The advantage of this 
continuity is the possibility of clearly defining the 
interfaces between the subparts and therefore coherently 
transferring information upon model build-up. There is 
nevertheless the lack of a clear description of how to 
model a functional assembly, where the geometric 
continuity between subparts of the model is not given. 
Besides, the use of a defined constraint network or rules 
as a basis for the implementation of constraints affects the 
model preparation, as every possible combination of 
parameters and its outcome has to be planned.  

Therefore, in this paper the GDA is used as a basis and 
adapted to the modeling requirements of a functional 
assembly. The model-based approach gives the 
advantage, of implementing every constraint in one 
subpart. The overall constraint network is built and 
checked automatically upon the merger in the product 
assembly. Besides, the parametric basis of this approach 
is suitable for use in a numerical optimization. 

3. METHOD 

This chapter introduces the method for the build-up of 
a robust geometric model for the use in the design 
automation and especially in a numerical optimization 
routine. Typically, this poses a major challenge in 
parametric CAD modeling when used throughout 
parameter variations with a high range of possible 
combinations. If a certain parameter combination results 
in a crashed CAD-model, no property values of the model 
can be used for the objective function of the optimization. 
The whole process is stopped. However, this robustness is 

not only of importance regarding an error-free build-up 
but also for the logical connection of subparts and the 
resolution of dependencies between these components. 

For a better understanding of the proposed method, the 
example of a coffee machine for high throughput is given 
throughout this chapter. The internal components and 
their functional behavior are modeled and later on 
optimized for a use-case of a customer. The basic structure 
of the machine consists of a brewing unit from which the 
coffee is pumped to a buffer tank. This minimizes waiting 
time, as the disposal of coffee and the brewing of new 
coffee can take place at the same time. A further schematic 
description of the components of the machine is given in 
Fig.2. 

3.1 Framework for the automated Optimization 

In this paper the underlying optimization process as 
presented in Fig. 1 is used.  
 

 
Fig. 1: Framework for the optimization 

 
For a comprehensive concept evaluation, the change 

in dimensional sizes of the product and its components has 
to be linked with the resulting functional outcome.  

Therefore, a functional model is used, which simulates 
the time-dependent behavior of the product. The 
geometric changes are formalized in a geometric CAD 
model. To interlink these models and ensure a correct 
parameter transfer an optimization algorithm is used as the 
leading instance. This algorithm changes the parameters 
inside the restricted design space. The sequence of 
parameter changes, as well as the model update, is 
determined in the optimization algorithm. Every further 
synthesizing and simulation step is within the functional 
analysis model and the geometric model and thus 
completely separated from the optimization process. The 
advantage is a transparent modeling process and a 
comprehensible solution-finding. 

3.2 Method for the build-up of a robust geometric 
assembly model 

One approach to establish a robust parametric CAD-
model is the clear definition of constraints within the 
model. Especially by using geometric constraints complex 
constraint equations can be built inside the model. If the 
constraint solver is not able to solve the equations for a 
defined set of parameter values or if there are several 
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solutions, where some of them result in a non-logic 
geometric output, the model can’t be regenerated.  

For the coffee machine and the framework presented 
in this paper, the clear definition of constraints is 
established using a GDA model. This is based on the 
definition of so-called design sections as a logical skeleton 
for the parametric model. These design sections are 
derived from the functional structure of the analysis model 
and describe the related geometric entities independent of 
the product components. Instead of defining a section for 
every component or coherent assembly itself, the 
definition of a design section may also virtually cut 
through a component. This approach is visualized in Fig. 
2, where the design sections for the coffee machine are 
shown. An example of this virtual cut is the water 
container section, which consists mainly of the water 
container and the interlinking pipes from the pumps. 
Therefore, the overall height of this design section is 
dependent on the height of the water container and the 
space necessary to store the pipes segment.  

The positioning of these design sections and the 
logical structure of the skeleton is used to represent 
different product structures. However, it has to be noted, 
that the change of a product structure inside one single 
optimization routine raises the model complexity, due to 
a higher number of dependencies. Additionally, the 
change of the product structure in the form of a skeleton 
modification imposes a set of further optimization 
parameters and therefore also increases the complexity of 
the solution space. Thus, the approach in this paper is to 
perform several parallel optimization routines with 
varying structures. This brings the advantage of a plainer 
solution space and the absolute comparison of the 
respective best solution value. 

The consistent merging of the design sections in the 
skeleton is mainly driven by the interface definition. The 
idea of this interface definition can be seen in Fig. 2 with 
the description of the functional interface openings, 
represented by the light squares or circles and the black 
arrows, schematically describing the functional flow 
through the assembly. 

 

 
Fig. 2: Design Section approach for the geometric model 

 
This flow again is derived from the energy and 

material flow through the product. In this exemplary case, 

this is represented by the water flow, from the container 
to the brewing unit and the tap element, as wells as the 
coffee flow from the dosing unit to the brewing unit. 
Therefore an interface is given, where on a logical basis 
flow from one design section to another is provided.  

This approach allows defining in which way the 
underlying components should interact with each other 
without adding constraints directly to every entire 
component. Also for the definition of parameter value 
limits, this approach provides a framework: There are 
some absolute lead parameters for the global parameters 
of the model like height, length or width, for which an 
absolute limit can be specified. All other parameters for 
the size of the inner design sections are defined as relative 
parameters (value range 0…1) in reference to the lead 
parameters. Every design section as placeholder has a 
representing geometric entity. These geometric entities 
are so-called design elements, which are parametric CAD-
parts. As described before, these CAD-parts are not bound 
to represent a complete product component, but may also 
include virtually cut parts of other components. The 
parameters and constraints from the design section 
definition are used in these design elements as a template 
for parameter referencing. The design element inserted 
into the design section, therefore, inherits the parameter 
definition of the design section. All parameters of a design 
element are relative parameters that are (directly or 
indirectly) linked to the parameters of a design section. By 
this, a defined constraint definition is also guaranteed for 
the underlying geometric entities. 

Furthermore, there can be provided more than one 
design element for every design section as shown in Fig. 
2 with the two different design elements for the water 
container. These design elements have to be designed 
beforehand and stored in a design library. This library can 
later be used to insert a variety of different design 
elements and therefore alter the actual conceptual design. 
Hereby, conceptual changes of the model are supported, 
too.  

In a first step, this model can be used as a means of a 
preliminary design, where the design elements in the 
design sections are represented as simple basic 
geometries, like cuboids or cylinders, constituting the 
necessary building room. In the further development 
process, when constantly adding design elements with the 
actual design, a more detailed model of the product can be 
built automatically from the design section templates.    

3.3 Design section and interface definition 

The following section gives an overview of the 
methodical derivation of the parameters and the design 
sections leading to the assembly model. Fig. 3 shows the 
basic methodical process. The first step is to define the 
functional structure of the product at hand. Using this 
functional structure as well as the energy and material 
flow a defined dependency structure of all components of 
the assembly is given. In addition, the functional structure 
gives a formalized and comprehensible way of defining 
those components, which have properties that affect the 
objective function (step two). These components and their 
parameters are later on used as the main drivers of the 
optimization. As the objective function and its outcome 
for a specified parameter variation is computed by the 
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functional analysis model, the third step is to create this 
model. Depending on the objectives of the development 
and the product at hand, this model must be able to reflect 
these objectives.  

In this exemplary case of the coffee machine, three 
main objectives that define the development are chosen. 
The first objective is the working time efficiency of the 
machine, regarding the serving of cups of coffee. The 
second objective is water consumption and therefore the 
efficiency of the brewing and buffering process. The third 
objective is the costs of the overall coffee machine, as this 
is a key measure for the profit of the producing company. 
Therefore, a time-dependent discrete event model in 
Matlab/Simulink is used to analyze the complete brewing, 
pumping, buffering and serving process [29]. For a 
parameter variation the main parameters, like the diameter 
of the brewing unit and the buffer tank, the pump sizes or 
the pipe sizes are chosen. As these parameters have a 
direct impact on the volumetric flow, they affect the 
objectives one and two, and because of the component 
changes also objective three. 

 

 
Fig. 3: Method for the geometric design section model 

 
In the following step, the boundaries for the solution 

space of the model are defined. This is mainly done by 
giving an upper and lower boundary for the parameters 
from step three. In this example, the boundaries are 
defined by the manufacturing restrictions. A distinction 
between components which are continuously changeable 

(e.g. the brewing unit which is manufactured in an in-
house sheet-metal deep-drawing process) and discretely 
changeable components (mainly commercial off-the-shelf 
parts, like pumps or motors) is made. Thus, the boundaries 
can either be chosen according to the manufacturing 
possibilities or via assigning a value range and therefore a 
discrete variation of a specific component.  

Regarding the geometric model, the main activity is to 
define how many design sections are necessary, where 
these design sections are placed and which parts of the 
actual geometry are inside every section. A preparation for 
this is the fifth step, where an analysis is done for which 
variation in the functional analysis model results in a 
fundamentally different constraint in the geometric 
model. This analysis is necessary to lower the necessity of 
implementing value-dependent constraints, which later on 
have to be managed externally. After this, in step six, the 
design sections, the components inside these sections and 
the interfaces between the sections are defined. The 
outcome for the exemplary case can be seen in Fig. 2 and 
is derived as already described in 3.2.  

After defining the design sections and the optimization 
parameters the basic structure of the model is given. The 
following step is the integration of the design sections in 
a global model which is defined by the design skeleton. 
For this integration the definition of the interfaces 
becomes crucial. As described in 3.2, the functional 
structure is used to determine the flow through the design 
sections. When combining the sections, the question arises 
which design sections have to be combined statically and 
which design sections may change independently.  

In a static combination, the geometric change of a 
design section is transferred directly to another design 
section by adjusting its position in the assembly. This is 
shown schematically in Fig. 4, where mainly the design 
sections of the brewing unit, the motor for the brewing 
unit and the coffee disposing unit are in the focus.  

 

 
Fig. 4: Overview of design sections dependencies 

 
As indicated by the black arrows and the functional 

interface openings between the design sections, a 
functional connection is given between the design section 
of the brewing unit and the motor design section, as well 
as, between the design section of the brewing unit and the 
disposing design section. The connection between the 
motor and the brewing unit is given because of the energy 
flow of the motor torque to the brewing screen via a 
toothed rack. The connection between the coffee disposer 
and the brewing unit is given by a material flow of the 
coffee from the disposer to the brewing screen. Now, a 
parameter change, like the height of the brewing unit 

Define functional structure

Define components including 
properties for the objective function

Build the functional analysis model 
including optimization parameter 

definition

Define the boundaries for the 
solution space

Identify which variations in the 
functional analysis model result in 
fundamentally different constraints 

in the geometric model

Define the design sections of the 
model and their interfaces based on 
the constraint analysis from before

Parameterize skeleton of the model 
& define interface parameters

Model design elements for every 
design section. One new element 
for every fundamentally different 

constraint situation

1

3

4

5

6

7

8

2

245



requires a static connection to the other two design 
sections. This preserves a coherent global model. 

Therefore, a change in height of the brewing unit 
requires a change in the vertical position of the other 
design sections. On the other hand, a change in the 
brewing unit may functionally also lead to the necessity of 
a more or less powerful and therefore larger or smaller 
motor. This functional change may also imply changes in 
the size of the motor design section, due to the exchange 
to a new motor version. In this scenario, while the two 
design sections of the motor and the brewing unit adjust 
their position interdependently, the design section of the 
coffee disposer only adjusts its position according to the 
interface with the brewing unit. As there is no flow 
between the motor and the coffee disposer, these design 
sections do not have to adjust accordingly.  

Changing the size of the motor design section may, 
therefore, lead to a gap between the design section of the 
motor and the coffee disposer. This still defines a feasible 
solution, because no functional or dependent intersection 
is given. The contrary case of a greater design section of 
the motor unit may lead to an intersection. Since this 
implies that there is not enough space for the components 
in the selected combination, this solution is considered 
infeasible and is returned as such to the optimizer. 

After defining the design sections and their behavior 
in the global model, the seventh step is to parameterize the 
skeleton and define the interface parameters. As shown in 
Fig. 4, the transparent passages and their position on the 
interfaces of the design sections play a vital role. 
Therefore the interface between two or more design 
sections is parameterized. Fig. 5 gives an exemplary 
overview of the interface parameterization between the 
design sections of the motor, the coffee disposer the and 
brewing unit. 

 

 
Fig. 5: Design section interface parameterization 

 
The parameter of the tank radius in the brewing unit is 

used as an optimization parameter, as it mainly affects all 
three objective functions. Therefore this parameter is 
integrated as a leading parameter into the interface 
parameterization. The functional interface openings are 
used for the positioning of the adjacent components in the 
other design sections. To prevent a collapsing of the 
design section because of an intersection of the 
component and the design section the following equations 
are used: 

�� � ��� ∗ �� � 2 ∗ 
�� � 
 (1) 


� � ����
 � 2 ∗ 
�� � 
 (2) 

�� � 	�� ∗ �
 � 2 ∗ ����� � ���� (3) 

The position of the center of the brewing unit in the 
design section is controlled by the relative parameter �� 
and �� in the equations (1) and (2). Due to the relative 
representation regarding the parameters �, representing 
the length of the design section, and 
 representing the 
width of the design section, an overlap is avoided. 
Equation (3) controls the position of the functional 
interface opening and therefore the position of the 
disposing component in the disposing design section. By 
adding the constant ���� a sufficient clearance between 
the center point of the disposing component and the outer 
and inner barrier of the brewing unit is given. An extreme 
value analysis shows, that no inference of the disposing 
unit opening and the tank radius is possible: 

����� � 0� � 	 ���� (4) 

����� � 1� � 	
 �	 ���� (5) 

The same applies to the positioning parameters of the 
center point of the tank. Additionally, the parameter of the 
angle � is used to vary the position of the center point of 
the disposer component. The last step is to define the 
design elements that are inside the design sections. Every 
design element interprets the interface parameters 
differently. The interface parameterization can be seen as 
a template that the design elements adjust to. Therefore in 
this step a design element library is created, where every 
new instance of the design element can be stored and later 
on reused. A new instance of the design element may be 
e.g. a component manufactured using different 
manufacturing processes. In this example, the interface 
parameter 
 from Fig. 5 defines the Radius of the brewing 
chamber in the brewing unit. The actual form of the 
chamber is defined in the design element itself. 

4. CASE STUDY 

The case study is referring to the example of the coffee 
machine concept, as shown schematically in Fig. 2. A 
functional model describing the brewing process and the 
transfer of the coffee from a brewing unit to a buffer tank 
and finally to a tap element is used for the functional 
analysis. Inside this functional model, every component 
and its parameters (functional and geometric) are 
implemented and therefore define the outcome. These 
parameters range from the geometric sizes of the brewing 
unit and the buffer tank to functional parameters like the 
volumetric flow of the pumps or the power output of the 
flow heater. As the aim is to show the impact of the 
presented method on the geometric model and its 
robustness throughout the optimization, this case study is 
performed using only one skeleton and therefore one 
product structure. Additional product structures are 
modeled later and can then be used to compare respective 
optima. 

The metrics to quantify the coffee machine in this case 
study are the objective functions of the working hours and 
water consumption. Two cases are displayed: Firstly, a 
single objective optimization of the performance of the 
machine, measured with the working hours. This 
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optimization gives a good representation of the outcome 
of changes in the objective function and the convergence 
of the design parameters. Secondly, a multi-objective 
optimization with the performance of the machine and 
water consumption to display a realistic consideration of 
the functionalities and properties in the product 
development. 

4.1 Single-objective optimization 

The single objective optimization is performed using 
the Particle Swarm optimization algorithm [30]. Fig. 6 
gives an overview of the user-scenario used to perform the 
optimization. 

 
Fig. 6: User-scenario of a hotel in the period of three 

hours 
 

The chosen scenario is a period of three hours in the 
morning in a hotel, where at several peak times guests 
have to be served. The metric of the optimization in this 
example is the working hours of the machine until every 
customer is served. Fig. 7 depicts the optimization 
process.  

 

 
Fig. 7: Optimization parameters convergence 

 
The five graphs show the values of the parameters of 

the brewing chamber diameter and height and the buffer 
tank diameter and height according to the number of 
evaluations, as well as three discrete pump types with 

different power outputs. For the discrete power pumps a 
value range is chosen. The boundaries are defined from 0 
to 1. If the optimizer chooses a value between 0 and 0.33 
the low power pump is chosen and so on. As can be seen, 
the optimization algorithm converges with defined values 
regarding the parameters after about 1000 evaluations. 

The upper graph in Fig. 8 shows the value of the 
objective function of the working hours over the number 
of evaluations. Additionally, every unfeasible parameter 
combination, due to intersecting design sections, is 
marked with a cross at the top in this graph. These 
intersecting combinations are flagged by the geometric 
model and passed to the optimization algorithm.  

 

 
Fig. 8: Change of the Objective Function over the 

evaluations 
 

Due to the violation of the restriction as a part of a 
death penalty, these solutions are not considered in the 
solution-finding. As can be seen, the number of crosses is 
declining towards the end of the optimization. The lower 
graph in Fig. 8: Change of the Objective Function over the 
evaluationsFig. 8 depicts the change in the best objective 
function value over the number of iterations. After about 
200 evaluations the best objective function value declines 
rapidly. In the following 300 evaluations, this value stays 
steady, followed by several minor changes at about 500 
evaluations.  

This second change correlates with parameter changes 
of the brewing chamber in the brewing unit in Fig. 7. 
Accordingly, at about 500 evaluations the diameter and 
height of the brewing chamber are significantly increased, 
leading to the improvement in the best objective function 
value. Another point to be marked in this evaluation is the 
convergence of the pump type to the middle power pump. 
As this is a single objective optimization, there is no 
conflicting objective function, as e.g. the cost, where a 
higher power pump alters the outcome with a higher price. 
Therefore a higher power pump leads to a lower working 
hour and a better objective function. The fact that the 
optimization algorithm converged to the middle power 
pump comes from the geometric restriction of the overall 
height of the machine. Fig. 9 gives an overview of the 
geometric model used for the optimization, displaying 
only the design sections without the design elements 
inside.  

A transparent enclosure marks the overall machine 
geometry restrictions for the height, width and depth. The 

0

10

20

30

40

6:00 6:30 7:00 7:30 8:00 8:30 9:00

C
up

s 
o

rd
er

ed

Time (h)

Scenario Hotel

Design parameter convergence

Objective value progress 

247



figure depicts the status of a geometric violation of the 
restrictions. The brewing unit, buffer tank and adapted to 
this the water container, are sized according to the 
converged parameter values from Fig. 7. The dotted line 
in the lower-left corner marks the difference in the 
geometric size of the middle and high power pump design 
section. The increase in volumetric flow regarding the 
high power pump does not compensate for the lower 
necessary tank volumes to fit the high power pump in the 
overall concept. 

 

 
Fig. 9: Restrictions in the geometric model 

 
This can also be visualized in the objective function 

values. A three-dimensional view of the parameters of the 
buffer tank and the objective function value (Fig. 10) 
shows that there is a hard restriction in the solution space, 
marked with a vertical dotted line. For a better 
understanding, the objective function values which were 
determined geometrically unfeasible have been put to the 
top of the diagram. An accumulation of solution points 
around the objective function value of 2.5 working hours 
and the design parameter values of 140 mm in diameter 
and 250 mm in height can be seen around the found 
optimum. A further increase in the height or the diameter 
of the buffer tank, although leading to a better objective 
function value, is discarded. The geometric model, 
therefore, prevents the optimization algorithm from 
stepping out of the restricted boundaries. 

 

 
Fig. 10: Influence of restrictions from the geometric 

model on the solution space 

4.2 Multi-objective optimization 

The multi-objective optimization is performed using 
the Non-dominated Sorting Genetic Algorithm II [31]. 
Again the scenario as presented in Fig. 6 is used for the 
optimization. Fig. 11 depicts the objective value space 
after 2500 iterations. The water consumption of the 
machine throughout the iterations is marked on the y-axis, 
while the performance quantified by the working hours is 
marked on the x-axis. 

 

 
Fig. 11: Objective value space in the multi-objective 

optimization 
 

The bigger dots mark the Pareto-front indicating the 
parameter combinations where any further change 
automatically leads to a higher value of one of the 
respective objective functions. Although the front is not 
fully formed, the result still is a coherent representation. 
Comparing this to the result from the single-objective 
optimization, the optimum from the first optimization can 
be found on the far left side of Fig. 11. As can be seen, 
starting from the value of 2.5 working hours to the left 
there is a steep increase of the second objective function. 
A slight improvement of the performance comes at the 
cost of exponentially higher water consumption. In 
product development, this outcome can be used for 
decision making by weighting the objective functions. 
This can be done according to the customer and their 
preferences regarding performance or efficiency. 

5. CONCLUSION AND FUTURE WORK 

This paper proposes a method based on the generative 
design approach (GDA) for the build-up of a geometric 
CAD model, capable of robustly representing the 
geometric solution space inside a numerical optimization 
routine. By using design sections and their main defining 
parameters instead of the fully detailed component models 
the modeling effort is reduced, while maintaining the 
necessary extent to give a precise outline of the geometric 
feasibility. The advantage of the proposed method is a 
structured procedure for creating a robust geometric 
model. By using the functional structure as a starting point 
the geometric changes are directly linked to the implied 

W
or

ki
ng

 H
ou

rs
 (

h)

Design Points with valid function values

Design Points violating geometric restrictions

Solution space for the buffer tank

W
at

er
 C

o
n

su
m

p
ti

o
n

 (
l)

248



functional changes, making it directly usable in a 
functional analysis as described in the presented case 
study. Additionally, by implementing all geometrical 
constraints and restrictions into the geometrical model, 
and furthermore into every single design section, the 
complexity of the constraint handling is reduced. 

In the presented case study of the optimization of a 
coffee machine the use of the geometric feasibility is 
shown, by effectively restricting the solution space. While 
a single-objective optimization of the performance of the 
coffee machine shows the properties and the outcome on 
the objective function, a multi-objective optimization 
additionally gives insight into a realistic transfer of the 
approach into the product development. The found 
optimal solutions are used as a starting point for decision 
making. The geometric model with the respective design 
sections gives a template for the more detailed models of 
the internal product components. Using a design element 
library the time for modeling a detailed version of the 
coffee machine is reduced.  

It is however to be noted, that the outcoming geometric 
model of the found optimum still has to be post-processed, 
according to the grade of detail chosen in the beginning to 
match the actual components to the found main 
parameters. Also, while most of the necessary information 
is given through the initial development in the conceptual 
phase, the derivation of the design sections, the interface 
definition and the parameterization needs preparation and 
adaptation to the problem at hand. Furthermore, the 
initiation of the necessary design elements and the 
consistency of the design element library are aspects, 
which need preparation and work throughout the 
development. Future work lays in the detailing of the 
design element library and the integration of detailed 
models into the optimization routine to lower the post-
processing time. 
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