

Abstract: One of the most successful and versatile

approaches to designing a product configurator system

is to utilize the power of Boolean Satisfiability (SAT)

solving. Such a system is called a SAT-based Product

Configurator. SAT solving is a well studied and very

competitive research field. One of the most important

techniques contributing to the success of state-of-the-art

SAT solvers is preprocessing. However, to our best

knowledge, these techniques are not yet being used in

SAT-based product configurators. The goal of this paper

is to find out which preprocessing algorithms can be

successfully utilized in this specific application of SAT

solving. Due to some theoretical properties of product

configuration, many of the preprocessing algorithms

used in standard SAT solving cannot be applied. We

identified four techniques that can be used and evaluated

them experimentally within the commercial product

configurator Merlin using real industrial configuration

benchmarks. We discovered, that the usage of particular

preprocessing techniques can significantly reduce the

size of the rule set, which leads to the reduction of the

configurator's memory usage.

Key Words: Preprocessing, Satisfiability, Product

Configuration

1. INTRODUCTION

Configuration software presents the user with the

ability to define a product with features and their

possible values. The user then defines constraints around

these features, creating a set of rules out of which a

finished product can be configured. During the

configuration process the user assigns desired values to

the properties of a product and the software is

responsible for determining whether the given

configuration satisfies the rules. The problem of

evaluating the given set of rules can be reduced to

solving the Boolean satisfiability problem [1]. One

technique that has not yet been researched in SAT based

product confgurators is preprocessing [2], which aims to

simplify the set of rules defined by the user. This work

details an effort to apply preprocessing techniques in the

commercial SAT based product configurator Merlin by

CAS Software. The main goal of this work is to

implement a module that seamlessly improves the

performance of the SAT solver used in Merlin by

preprocessing the ruleset. The growth of customer

workspaces also puts bigger strains on hardware.

Increased waiting times during configuration may

increase usability concerns. By preprocessing we aim to

reduce the response time and memory usage of the

configurator. In order to achieve this result, we pose the

following central question: Which individual and

combinations of preprocessing techniques for CNF-based

formulas are applicable to an incremental SAT solver

result in the greatest speedup of the solving time in a

product configurator like Merlin.

2. PRELIMINARIES

In this Section we define the relevant terms and

algorithms required in rest of the paper. In particular, we

define the basic terminology for Boolean SAT solving

and give an overview of relevant preprocessing

algorithms.

2.1. Boolean SAT Solving

A Boolean variable is variable with two possible

values: True and False. A literal is a Boolean variable

(positive literal) or its negation (negative literal). A

clause is a disjunction (or) of literals and a term is a

conjunction (and) of literals. The size of a clause/term is

the number of literals it contains.

A CNF (Conjunctive Normal Form) formula is

conjunction of clauses and a DNF (Disjunctive Normal

Form) formula is a disjunction of terms.

A truth assignment function assigns a value (True or

False) to each Boolean variable in a given formula. An

assignment satisfies a CNF (DNF) formula if it satisfies

each of its clauses (at least one of its terms). An

assignment satisfies a clause if it satisfies at least one of

its literals and a term if it satisfies all of its literals.

Finally, an assignment satisfies a positive (negative)

literal if its corresponding variables has the value true

(false) assigned.

If there is truth assignment that satisfies a given a

formula we call this formula satisfiable. The problem of

Satisfiability (SAT) is to determine whether a given

formula is satisfiable and if yes, then finding a satisfying

assignment. An algorithm or tool that can solve the SAT

problem is called a SAT Solver.

In many applications of SAT a long sequence of very

similar formulas is being solved. In such cases it is

beneficial to use a so-called incremental SAT solver [3].

An incremental SAT solver provides an API which can

PREPROCESSING TECHNIQUES TO

IMPROVE SATISFIABILITY-BASED

PRODUCT CONFIGURATORS
Vinzent Brömauer, Tomáš Balyo, Noemi Christensen, Tobias Ostertag

CAS Software AG, Karlsruhe, Germany

10th International Conference on Mass Customization and
Personalization – Community of Europe (MCP ‐ CE 2022)
Toward the Sustainable, User‐Centric and Smart
Industry 5.0
September 21‐23, 2022, Novi Sad, Serbia

11

be used to use the SAT solver interactively [4]. This can

bring significant performance benefits, on the other hand,

it limits the number of usable preprocessing and

inprocessing algorithms [5].

2.2. Preprocessing Algorithms

The general steps a SAT solving based application

undertakes to come to a solution are clause building,

preprocessing and clause evaluation. These steps are

generally not rigid. Clause building and preprocessing

might overlap whereas clauses are inserted, they are

already modified and simplified. One such technique

called forward subsumption is further examined below.

The evaluation step itself might consist of some

preprocessing techniques. The DPLL Algorithm is based

on Pure Literal Elimination and Unit Propagation, which

both modify and reduce clause sizes. Clauses themselves

are meant to be adapted, changed, removed and added

during every part of the solving process. Another

common technique is to combine preprocessing steps

with the solving process. This is called inprocessing and

won't be examined in this work [6].

The idea of preprocessing is that by modifying and

simplifying the formula we can aid the solver in finding

solutions more quickly. Due to the complexity of the

problem, simply shortening the ruleset by removing

duplicate or tautological terms may already be beneficial

to the result. It is important to understand that depending

on the solving algorithm shorter but more complex

rulesets are more difficult than longer but simpler ones.

As such it is the point of some preprocessing techniques

to introduce redundancies into the formula that shorten

certain subtasks. Another intricacy is the order of

applying certain techniques. Certain techniques may

work better if applied after other techniques. Or it may

be the case that one technique makes another obsolete.

The conclusion is that applying preprocessing correctly

is an important part of the implementation. As a whole

preprocessing is a vital part of optimized solving.

There are numerous preprocessing algorithms in

literature, however, only a few of them are easily

applicable in incremental SAT solving. We identified

four techniques for this work, which we will define next.

2.2.1 Subsumption

Subsumption represents a basic but powerful

optimization technique which allows us to remove entire

clauses from a formula. In a CNF formula F, a clause C

is subsumed by a clause D if the set of literals in clause C

is a (non-strict) superset of the literals in clause D.

Subsumed clauses obviously do not contribute to the

logical complexity of the formula. We can remove them

without changing whether the formula is satisfiable or

not.

2.2.2 DNF Subsumption

Subsumption can be also used on the terms of a DNF

formula. A term C is subsumed by a term D if the set of

literals in C is a (non-strict) superset of the literals in

clause D. Like subsumed clauses, subsumed terms also

do not contribute to the logical complexity of the formula

and cane be removed. Additionally, we can apply

subsumption to a pair of DNF formulas connected by

conjunction, if the terms of one DNF are a subset of the

terms in the other DNF.

2.2.3 Self-Subsuming Resolution

Like subsumption, self-subsuming resolution deals

with pairs of clauses and the overlap of their literals.

Unlike subsumption however we are not only concerned

with removing an entire clause, but also with

strengthening it if removal is not possible. Clause

strengthening happens when we remove literals from a

clause. Suppose we have a formula with clauses (C or l)

and (D or -l) which represent two clauses with an added

literal. If C subsumes D, we can simply strengthen (D or

-l) to D.

We prove that strengthening the clause does not

modify the satisfiability of the formula. We again think

of the satisfiability of a formula F containing (C or l) and

(D or -l). Anything that satisfies clause (C or l) with the

exception of l also satisfies D due to their relation under

subsumption. If we assert l=false the formula has not yet

been satisfied as clause C remains. To satisfy it one of

the literals of C has to be satisfied which in turn satisfies

D. If on the other hand we assert l=true, we still need to

satisfy one literal of D. In both cases the literal -l of the

clause (D or -l) is irrelevant to the satisfiability of the

formula and therefore can be removed.

2.2.4 Failed Literal Probing

One common technique used in both preprocessing

and solving is Unit Propagation. A Unit Clause is a

Clause that only contains a single literal. The single

literal of a unit clause is called a unit literal. We collect

all unit clauses of a given formula and assume that

variables are set to satisfy these unit clauses. Following

the assertion on the truth value of these variables we are

able to simplify the formula as follows. We can remove

all the clauses that contain any of the true literals and

remove all false literals from each clause that contains

any of them. Some clauses get shorter and may even

become unit clauses. Therefore, we can repeat the

process recursively until no new unit clause emerges. If

for some clause all of its literals get removed, then we

have determined that the formula is unsatisfiable.

Failed Literal Probing makes heavy use of literal

propagation. A literal L is a failed literal with respect to a

formula F if unit propagation derives an empty clause on

(F and L). The logical consequence of the conflict is that

F implies -L and we can therefore add (-L) as a unit

clause. Furthermore, we can simplify the formula by

removing all the clauses that contain -L and remove L

from each clause that contains L.

3. RELATED WORK

In the world of practical SAT solving there exist

many implementations to various algorithms. An annual

competition called the SAT Competition [7] pits

12

submitted solvers against challenging and large

problems. One of the tracks focusses on incremental

solvers. Among the top-ranking solvers is CaDiCal [8].

CaDiCals described goal was to be an easy to understand

and modifiable SAT solver that focusses on

documentation.

One early and prominent adoption of SAT solving

algorithms is MiniSat [9] which was featured in the SAT

competition in 2005 [10] which among other things used

preprocessing techniques to reduce memory usage [11].

To our best knowledge, there is no previous

published work regarding using preprocessing in a SAT

based product configurator.

4. IMPLEMENTATION DETAILS

In this Section we will discuss some implementation

details regarding the preprocessing algorithms described

in Subsection 2.2.

4.1. Subsumption

A trivial implementation of subsumption would

compare every clause with every other clause resulting in

a quadradic time complexity in the number of clauses.

The comparison would determine whether clause A has

all literals of clause B. Realistically, a large majority of

clauses will only contain two or three literals. Further

implementation details split up subsumption in forward

and backward subsumption. Forward subsumption

checks if a clause C is subsumed by a clause D in a

formula whereas backwards subsumption checks if

formula contains clauses C that are subsumed by a given

clause D. We can apply forward subsumption when

adding new clauses such as when generating our clause

set. Backward subsumption already assumes a complete

formula and simply iterates over every clause. For the

purpose of streamlining the application of techniques we

chose the latter.

Due to the potentially hundreds of thousands of

clauses found in certain use cases of Merlin, a trivial

implementation would not suffice. There are several

ways to speed up subsumption. One common

optimization is to only compare a clause to every clause

that also contains its literals. To do that we keep a full

occurrence list that maps each literal onto a set of clauses

that contain that literal.

For backwards subsumption we now check the size of

the occurrence list of each literal in a clause and pick the

smallest one. We can do this because a clause that can be

subsumed by our previous clause must contain all its

literals.

The subsuming check itself can be optimized further

as well. Trivially, if clause B is shorter than clause A,

then clause A cannot subsume clause B. Additionally, in

certain cases we are able to determine that subsumption

is not possible by checking against a clause’s signature

[8]. We calculate the signature by applying a logical or to

the hash of each literal. The signature is intended to

function as a lossy form of a bitmask. The number of

literals found in formulas is generally in the 10.000 to

40.000 range, but it is far less than the largest possible

number represented through a 32-bit integer. To still

make use of all 32 bits of the signature and improve the

Algorithm 1. Self-subsuming resolution

possible effect this method can have, we use a custom

hash function on the integer representation of the literals.

Using the signature we can express our exit condition as

follows. We denote the signature of clause A with Sig(A)

• bitwise invert Sig(B) obtaining ~Sig(B)

• compute bitwise AND of Sig(A) and

~Sig(B)

• compare with zero

In other words, the signature of a clause C that is

subsumed by another clause D has a 1 bit in at least at

every position the signature of clause D has. So if the

bitwise AND of the first with the negated second is zero,

we know that the second signature fulfills our condition

and the clause may potentially be subsumed. We cannot

prove whether that is actually the case without doing a

full check. But a failure to meet this condition asserts

that subsumption is not possible, allowing us to skip the

full check.

4.2. Self-subsuming Resolution

The check for self-subsumption can easily be

integrated into our previous subsumption algorithm but

we allow at most one negated literal of C in the

potentially subsumed clause D. This complicates the

subsumption check substantially.

This integration allows us to do both checks

simultaneously while profiting from our previous

improvements through the usage of an occurrence list. In

the pseudocode detailing this combined approach in

Algorithm 1 we can see, that if the initial check for the

existence of the literal in the maybe subsumed clause

fails we fall back onto a second check. We keep track of

both the literal that may be removed due to self-

subsumption and also make sure only one such case is

allowed. This culminates in a rather complex procedure

that nonetheless allows us to apply these two techniques

simultaneously.

However, when we look at our previous

optimizations for subsumption, multiple issues arise.

First, the occurrence list now is not accurate anymore

when we allow one literal to be negated. To fix this issue

we can additionally keep track of all clauses in the

occurrence lists of its negated literals. This diminishes

the speedup gained through this technique but is

necessary for the purpose of self-subsuming resolution.

13

A similar issue arises with our previously described

method of calculating a signature for the purpose of

exiting out of a subsumption check early. Here again we

may choose to additionally hash the negated literal,

though that also reduces the effectiveness of that method.

Once these problems have been dealt with however,

more issues arise. In the following we assume that a

subsumption check actually occurs and is not skipped

due to our previous optimizations.

One thing to consider is the order in which we

compare clauses. A clause that was strengthened may

subsume more clauses than in its unstrengthened state.

During backward subsumption we made use of its

transitive property to allow us to disregard the order of

subsumption. Strengthening clauses however breaks that

assumption.

Due to our optimization around occurrence lists the

first subsumption check would have been skipped either

way but we still need to disregard the previous result.

This is a bigger problem that complicates our approach

to this technique but there are two solutions. First, we

can adapt backwards subsumption to instead work based

on a queue. One after the other we insert clauses and

perform a full self-subsuming resolution check against

other clauses. Whenever a clause gets changed we

append it to the queue. When the queue is empty we

simply add the next not yet examined clause. This allows

us to keep our backwards approach but may potentially

introduce duplicate checks of the same clause. In our

previous example we can perform the subsumption check

on clause two with clause three (which fails), then

strengthen due to self-subsuming resolution and lastly

repeat the subsumption of the latter two clauses which

now succeeds.

Second, we may instead adapt forward subsumption.

We may add clauses one by one with the smallest clause

first. Then using a One-Watched-Literal approach we

store the literal with the least occurrences. When adding

a new clause, we simply traverse all One-Watched-

Literal lists and check for self-subsuming resolution. If

the clause is subsumed, we do not add it at all. For the

purpose of reusing our existing approach we integrated

self-subsuming resolution into backward subsumption.

5. EXPERIMENTAL EVALUATION

During the development and evaluation of the work

presented here multiple testing techniques were used. On

a larger scale we used customer workspaces that were

given to the development team of Merlin for the purpose

of testing our efforts on real world use cases.

Several factors went into the specifics under which

each statistic was created. For pure tests of effectiveness

such as the number of clauses removed by subsumption

(see Figure 1), the actual runtime of the optimization was

not necessarily important. If the technique did not

remove anything at all, no implementation quirk could

change that. After examining backward subsumption we

did not examine forward subsumption as the end result

should be the same. After concluding that the technique

seemed useful enough, as with subsumption, more effort

was put into measuring speed. Here however another

issue arises due to the nature of the programming

Fig. 1. Effectiveness of subsumption on products from the

largest available customer workspace

language that Merlin was developed in. Java bytecode as

generated by the javac compiler runs on a platform--

independent virtual machine. To combat effects such as

virtual machine warmup and other potential minimal lags

due to first time initialization, all performance measuring

tests were run three times back to back [12]. The

statistics of the first two runs were discarded and only

the third taken into consideration. Performance

comparison tests were done back to back (i.e. test run

with subsumption and without such as in Figure 1) in

that same manner.

Another important aspect of this type of data analysis

is the consideration whether the data gathered was

trustable in the first place. The testing conditions were

accounted for, the code itself was validated with

handwritten regression tests and multiple runs sought to

eliminate any coincidental slowdowns through vm

warmup. But is the result plausible at all? Corresponding

analysis was largely done through finding more metrics

to keep track of, such as clause size and literal count. We

can for example see that the tests on the large customer

workspace we use for performance testing builds

products that consist of a large majority of smaller

clauses. We previously pointed out that subsumption

works best when the subsuming clause has few literals.

Therefore, a clause size distribution approaching an

exponential decay could plausibly remove 35% of

clauses. Even though some products consist of 200.000

clauses, they do not contain more literals than formulas

half their size. In theory one should be able to observe a

stark contrast between the percentage of clauses removed

from the former. And looking at the data presented in

Figure 1 we can see exactly that effect. Likewise, the

other tests on a much smaller customer workspace

revealed that even though these product formulas are

quite small in comparison, they do in fact have many

literals. Where earlier we had 40.000 literals for 200.000

clauses, here we have 11.000 literals for 16.000 clauses.

In this case we observed a drastically lower percentage

of clauses subsumed.

We can immediately see that on the second and last

product that both contain over 200.000 clauses.

Subsumption was able to remove 35\% and 38\% of

clauses respectively, shrinking the formulas to around

130.000. The application of the technique to this product

took around 5 seconds. Further, there seems to be a

14

Fig. 2. Scatterplot of optimized and unoptimized runtime

tests on the largest customer workspace available

correlation between the size of the formula and both

the runtime and number of clauses that subsumption is

able to remove. This is plausible considering the

quadratic nature of looking at pairs in a set.

Next, we will more closely examine the runtime of

the solver. We first examine what impact the techniques

have on the formula and follow with a benchmark of a

set of tests. To measure a possible impact on the runtime

we perform the previous tests again and closely monitor

the solver. Again, we use the largest workspace available

and perform the subsumption technique. Figure 2 depicts

a scatterplot. Each data point gathered from the tests (of

which there are 109) is marked as a red dot. The x-

coordinate of each dot consists of the runtime of the SAT

solver with subsumption and the y-coordinate the

runtime without any preprocessing. The black diagonal

line represents a reference where x = y. If the red dot is

above the line the subsumed runtime of that test took

longer and vice versa. Additionally, we make use of a

logarithmic scale to magnify outliers and get a better

distribution across the graphic.

We can observe a clustering of results at the diagonal

indicating that no significant speedup or slowdown

occurred. As the runtime of the tests get higher though

we see more fluctuation culminating in a drastic

slowdown towards the higher end of runtime. Looking

closer at the numbers, the total runtime of all tests with

optimization is 77.599 seconds and 53.234 seconds

without. We take the sum of the 95% quantile of both

data sets to get an idea of the general speedup without

outliers. Using the subsumption optimization, the 109

tests have a total runtime, filtered to the 95% of lower

values, of 35.304 seconds. Without any optimization, the

95% quantile of the runtimes of the tests summed up is

32.887 seconds. This data suggests that we do in fact

have a small speedup over the course of all tests, though

we did not consider the time taken for preprocessing.

Even though subsumption was able to remove a large

number of clauses, the actual speedup seems to be

minimal though existing.

To further examine the impact that subsumption has

on the properties of the solver we can plot the statistics

taken from both runs and compare them. Figure 3 shows

that as a whole all four stats generally went up. The

solver had to consistently restart more, even breaking a

third restart. Interrupts, solving time and branches also

generally went up although there are isolated cases

where it slightly decreased.

Fig. 4. Scatterplot of optimized and unoptimized runtime

tests on a smaller customer workspace.

For further data we applied the same methodology to

a smaller customer workspace (see Figure 4). There were

multiple noteworthy observations made. First of we have

a large volatility in data. While the average seems to

match with the neutral diagonal, due to the very short

runtime of the tests we observe a far heavier spread. This

can be explained in part due to the small runtime of these

tests no matter the optimization. As we can see on the x

and y axis, the tests regularly finish within a few

milliseconds. Therefore, it is possible that the data

contains a large amount of coincidental slowdown on

both tests that obfuscate our measurements.

The sum of the solving time of all tests without

subsumption is 3.296 seconds and 2.812 seconds with

subsumption. The same 95\% quantile of the runtime

reveals that with optimization we have a total runtime of

1.497 seconds whereas without optimization we get

1.846 seconds. As opposed to the large workspace here

we see several tests that feature substantial speedups

using our optimization. While the runtime of these tests

is still very small and quite scattered, it does seem like

there is a potential for speedup. Though there is also a

range of tests that are slower with optimization.

There are several possible explanations for these

results. First, subsumed clauses are able to be deleted

because they do not contribute to the complexity of the

formula, but provide redundancies that may allow a

solver to find contradictions sooner, therefore offsetting

the additional clauses that need to be evaluated. Further,

as we will discuss later, a small number of DNF clauses

may contribute to a large part of the complexity of a

formula than a large number of Or clauses. We assume

that the main problem of this technique is that it is not

able to reduce the number of literals found in the clauses.

Despite reducing the clause size of two products in the

large workspace from 200.000 to 130.000, the number of

literals stays constant at 40.000. However, because

Merlin contains an incremental solver, removing literals

in of itself is not allowed. We can at best propagate them

and add them as unit clauses.

For now, though we suppose that subsumption is a

marginally effective preprocessing mechanism for our

use case under the condition that the number of clauses is

above a certain threshold and the ratio between the

number of clauses and the number of literals is anywhere

above 2:1. Additionally, further implementation

improvements such as literal sorting may be necessary to

further speed up of the subsumption check.

15

Fig. 3. Solver statistics comparing subsuming (blue) and

default (orange) benchmarks

5.1. Self-Subsuming Resolution

In our experiments, the technique was not able to

strengthen any clause and the number of subsumed

clauses is equal to number of simply subsumed clauses.

We may additionally examine the number of clauses we

are able to strengthen in another workspace but the

results seem to be the same. Applying the technique to

the smaller workspace used in other benchmarks gave

the same results which we do not elaborate on again.

We may consider the plausibility of this technique. In

order for it to work at all we need two clauses that are

nearly identical but one specific literal has to be negated.

Even across products with 200.000 clauses this did not

seem to occur even once. While we would be able to

create a situation in which we may strengthen a clause,

this in of itself seems to not occur coincidentally in the

specific use cases that customers of Merlin work with.

5.2. Failed Literal Probing

We probed a small customer workspace for failed

literals. We observed that although some products

contain over 11.000 literals, none of them have been

determined to be failed. We repeated the check on the

biggest customer workspace we have available, however

we get no positive results. The quite strict conditions of

failed literals seem to not be fulfilled, even if the product

consists of over 200.000 clauses.

Table 1. Table displaying the number of DNF Formulas

contained in a test, the number of combined DNF Terms

and the number of DNF Terms after subsumption was

applied

It seems much more likely that a failed literal is created

as a result of clause strengthening itself. And while failed

literal elimination in theory does just that, if nothing is

found, there is no propagation and thus no clause

strengthening. As such, failed literal probing on its own

does not seem like a promising preprocessing mechanism

in the context of Merlin. We can clearly see that failed

literal probing is unable to modify the formula.

Therefore, we conclude that failed literal probing is not

useful for our use case.

5.3. DNF Subsumption

We now discuss the effectiveness of subsumption on

DNF formulas. We first apply subsumption of DNF

Terms to our smaller workspace again to check for the

number of terms we are able to remove. Subsumption

was not able to remove any term. The same result can be

seen in any of the other test products, though that is

easily explainable by the miniscule number of terms.

Previous benchmarks showed us that subsumption on

less than 16.000 clauses/terms only had a minor effect.

And here we have the added problem that these terms are

split up into eight individual groups.

When applying the technique to our large workspace

however we see a massive reduction in the number of

terms. Table 1 displays the number of clauses, terms and

terms after applying subsumption. We can for example

see that the second to last product contained over 70.000

terms of which more than 45.000 (64% of terms) were

subsumed. For comparison, from a relative perspective

this is more than the subsumption applied to Or Clauses

was able to remove.

We also run the benchmark and measure the solving

time required for each test in a large workspace and

apply the subsumption technique to DNF Clauses. In

Figure 5 we can see a clear slowdown of the solving

speed. While faster tests retained their runtime, the

slower ones became even slower. We can sum up the

total runtime and see that without optimization we get a

runtime of 53.234 seconds and with subsumption we get

121.075 seconds. As the small workspace did not find

any subsumed terms a runtime benchmark was

unnecessary.

5.4. Discussion of the Results

We sought to find techniques for optimizing formulas in

incremental SAT. In our research we examined

subsumption, self-subsuming resolution and failed literal

probing and applied these to our use case. There were

other techniques that were considered but ultimately

disregarded. Pure literal elimination is a technique

commonly used in regular SAT and is not directly

applicable to incremental SAT. Further, blocked clause

elimination was considered for a closer examination as

there is existing research on its application in

incremental SAT. However due to the requirements of

inprocessing which we do not apply in this work, the

technique was disregarded as well. We implemented the

subsumption technique both for CNF and DNF type

formulas. In both cases major reductions in formula size

can be observed depending on the ratio of clauses to the

16

Fig. 5. Scatterplot of optimized and unoptimized runtime

tests on a small customer workspace using subsumption

of DNF Clauses

number of unique literals and the total size of the

formula. Further measuring the runtime of the solving

step, we did not observe a general pattern of speedup or

slowdown though both occurred. In a workspace with

products that generally have 200.000 clauses and 40.000

literals we observed a trend towards slowing down in

cases where the runtime of the test was already large.

However, in a smaller workspace we instead

occasionally observed a speedup. The biggest discovery

was the amount of terms that could be removed from

DNF Clauses through the subsumption technique as it

broke 65% in one case. Our benchmarks of self-

subsuming resolution and failed literal elimination

showed that neither are able to modify the formula at all.

One aspect of the subsumption technique that has not

been detailed is the potential for its reduction in memory

usage. Among the issues faced with running Merlin is

the runtime overhead. We have seen that the number of

clauses may exceed 200.000. To have as many clauses

present in memory sets certain restrictions on the

hardware that may exceed what is available. This

underlying problem is a major concern for Merlin at this

time. The computer that was used to implement

preprocessing techniques itself had to have its RAM

increased past 8GB to 32GB to meet the requirements for

the server infrastructure. If the subsumption technique is

applied, the potential for reducing this barrier of entry

may be substantial. To potentially achieve the desired

result, we propose the use of a forward subsumption

technique as common implementations of backward

subsumption may leave clauses in memory. This may be

used for both DNF Clauses as well as Or Clauses.

6. CONCLUSION

In this paper we discussed various approaches to

preprocess SAT formulas in a product configurator. The

conclusion drawn from the results is that while the

subsumption technique on CNF and DNF formulas did in

fact show great effect in reducing the formula size, this

partially resulted in a slowdown. In other cases, such as

when applied to smaller CNF formula, subsumption

showed occasional speedup. Lastly, we presume the

potential for reducing the memory usage through the

application of these techniques.

In the work we primarily looked at the end result of

having a formula that has been preprocessed. Runtime of

preprocessing itself has not been a major factor in our

benchmarks and was never directly addressed. While

optimizations for individual techniques were examined

more closely, there is still major speedup potential. The

idea of using a module which requires conversion of

rules to and from also does not correspond to the nature

of finding optimal and fast solutions. Instead, we focused

our efforts on testing whether these techniques were

useful at all.

One thing that could have been done better is a

broader examination of how other SAT solvers tackle the

issue of preprocessing in incremental SAT. For the most

part only theoretical approaches were researched. It was

also shown that the lack of inprocessing did not allow for

certain techniques to be applied. There are more ways to

implement classical SAT preprocessing techniques by

reintroducing previously removed literals should they be

used in a newly introduced clause. Any technique that

makes use of this idea was not further examined. Further,

an analysis regarding the complexity of a formula in

context of Merlin’s SAT solver has not been conducted.

Techniques that potentially increase the clause size but

reduce complexity were not examined as complexity was

not a quantified metric in our research.

This work represents a first step to implementing

preprocessing in a SAT based product configurator

Merlin. Several techniques were examined but there

were also restrictions set in place. There is potential for

optimizing the memory usage of Merlin by removing

clauses with forward subsumption before they get added.

There may also be value in researching more techniques

used in other incremental SAT solvers including

techniques that make use of inprocessing.

REFERENCES

[1] Janota, Mikoláš. SAT solving in interactive

configuration. Diss. University College Dublin, 2010.

[2] Biere, Armin, Marijn Heule, and Hans van Maaren,

eds. Handbook of satisfiability. Vol. 185. IOS press,

2009.

[3] Hooker, John N. "Solving the incremental

satisfiability problem." The Journal of Logic

Programming 15.1-2, 1993.

[4] Balyo, Tomáš, et al. "SAT race 2015." Artificial

Intelligence 241, 2016.

[5] Nadel, Alexander, Vadim Ryvchin, and Ofer

Strichman. "Preprocessing in incremental SAT."

International Conference on Theory and Applications

of Satisfiability Testing. Springer, Berlin, Heidelberg,

2012.

[6] Manthey, Norbert, Tobias Philipp, and Christoph

Wernhard. "Soundness of inprocessing in clause

sharing SAT solvers." International Conference on

Theory and Applications of Satisfiability Testing.

Springer, Berlin, Heidelberg, 2013.

[7] Froleyks, Nils, et al. "Sat competition 2020."

Artificial Intelligence 301, 2021.

[8] Fleury, Armin Biere Katalin Fazekas Mathias, and

Maximilian Heisinger. "CaDiCaL, kissat, paracooba,

plingeling and treengeling entering the SAT

17

competition 2020." SAT COMPETITION 2020,

2020.

[9] Sorensson, Niklas, and Niklas Een. "Minisat v1. 13-a

sat solver with conflict-clause minimization." SAT

2005.53, 2005.

[10] Järvisalo, Matti, et al. "The international SAT solver

competitions." Ai Magazine 33.1, 2012

[11] Eén, Niklas, and Armin Biere. "Effective

preprocessing in SAT through variable and clause

elimination." International conference on theory and

applications of satisfiability testing. Springer, Berlin,

Heidelberg, 2005.

[12] Lion, David, et al. "Don’t Get Caught in the Cold,

Warm-up Your JVM: Understand and Eliminate JVM

Warm-up Overhead in Data-Parallel Systems." 12th

USENIX Symposium on Operating Systems Design

and Implementation (OSDI 16), 2016.

CORRESPONDENCE

Vinzent Brömauer, brvi1016@h-ka.de

Dr. Tomáš Balyo, tomas.balyo@cas.de

Noemi Christensen, noemi.christensen@cas.de

Tobias Ostertag, tobias.ostertag@cas.de

18

mailto:brvi1016@h-ka.de
mailto:tomas.balyo@cas.de
mailto:noemi.christensen@cas.de
mailto:tobias.ostertag@cas.de

