
  

Abstract: One of the most successful and versatile 

approaches to designing a product configurator system 

is to utilize the power of Boolean Satisfiability (SAT) 

solving. Such a system is called a SAT-based Product 

Configurator. SAT solving is a well studied and very 

competitive research field. One of the most important 

techniques contributing to the success of state-of-the-art 

SAT solvers is preprocessing. However, to our best 

knowledge, these techniques are not yet being used in 

SAT-based product configurators. The goal of this paper 

is to find out which preprocessing algorithms can be 

successfully utilized in this specific application of SAT 

solving. Due to some theoretical properties of product 

configuration, many of the preprocessing algorithms 

used in standard SAT solving cannot be applied. We 

identified four techniques that can be used and evaluated 

them experimentally within the commercial product 

configurator Merlin using real industrial configuration 

benchmarks. We discovered, that the usage of particular 

preprocessing techniques can significantly reduce the 

size of the rule set, which leads to the reduction of the 

configurator's memory usage. 
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1. INTRODUCTION 

Configuration software presents the user with the 

ability to define a product with features and their 

possible values. The user then defines constraints around 

these features, creating a set of rules out of which a 

finished product can be configured. During the 

configuration process the user assigns desired values to 

the properties of a product and the software is 

responsible for determining whether the given 

configuration satisfies the rules. The problem of 

evaluating the given set of rules can be reduced to 

solving the Boolean satisfiability problem [1]. One 

technique that has not yet been researched in SAT based 

product confgurators is preprocessing [2], which aims to 

simplify the set of rules defined by the user. This work 

details an effort to apply preprocessing techniques in the 

commercial SAT based product configurator Merlin by 

CAS Software. The main goal of this work is to 

implement a module that seamlessly improves the 

performance of the SAT solver used in Merlin by 

preprocessing the ruleset. The growth of customer 

workspaces also puts bigger strains on hardware. 

Increased waiting times during configuration may 

increase usability concerns. By preprocessing we aim to 

reduce the response time and memory usage of the 

configurator. In order to achieve this result, we pose the 

following central question: Which individual and 

combinations of preprocessing techniques for CNF-based 

formulas are applicable to an incremental SAT solver 

result in the greatest speedup of the solving time in a 

product configurator like Merlin. 

2. PRELIMINARIES 

In this Section we define the relevant terms and 

algorithms required in rest of the paper. In particular, we 

define the basic terminology for Boolean SAT solving 

and give an overview of relevant preprocessing 

algorithms. 

2.1. Boolean SAT Solving 

A Boolean variable is variable with two possible 

values: True and False. A literal is a Boolean variable 

(positive literal) or its negation (negative literal). A 

clause is a disjunction (or) of literals and a term is a 

conjunction (and) of literals. The size of a clause/term is 

the number of literals it contains. 

A CNF (Conjunctive Normal Form) formula is 

conjunction of clauses and a DNF (Disjunctive Normal 

Form) formula is a disjunction of terms. 

A truth assignment function assigns a value (True or 

False) to each Boolean variable in a given formula. An 

assignment satisfies a CNF (DNF) formula if it satisfies 

each of its clauses (at least one of its terms). An 

assignment satisfies a clause if it satisfies at least one of 

its literals and a term if it satisfies all of its literals. 

Finally, an assignment satisfies a positive (negative) 

literal if its corresponding variables has the value true 

(false) assigned. 

If there is truth assignment that satisfies a given a 

formula we call this formula satisfiable. The problem of 

Satisfiability (SAT) is to determine whether a given 

formula is satisfiable and if yes, then finding a satisfying 

assignment. An algorithm or tool that can solve the SAT 

problem is called a SAT Solver. 

In many applications of SAT a long sequence of very 

similar formulas is being solved. In such cases it is 

beneficial to use a so-called incremental SAT solver [3]. 

An incremental SAT solver provides an API which can 
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be used to use the SAT solver interactively [4]. This can 

bring significant performance benefits, on the other hand, 

it limits the number of usable preprocessing and 

inprocessing algorithms [5]. 

2.2. Preprocessing Algorithms 

The general steps a SAT solving based application 

undertakes to come to a solution are clause building, 

preprocessing and clause evaluation. These steps are 

generally not rigid. Clause building and preprocessing 

might overlap whereas clauses are inserted, they are 

already modified and simplified. One such technique 

called forward subsumption is further examined below. 

The evaluation step itself might consist of some 

preprocessing techniques. The DPLL Algorithm is based 

on Pure Literal Elimination and Unit Propagation, which 

both modify and reduce clause sizes. Clauses themselves 

are meant to be adapted, changed, removed and added 

during every part of the solving process. Another 

common technique is to combine preprocessing steps 

with the solving process. This is called inprocessing and 

won't be examined in this work [6]. 

The idea of preprocessing is that by modifying and 

simplifying the formula we can aid the solver in finding 

solutions more quickly. Due to the complexity of the 

problem, simply shortening the ruleset by removing 

duplicate or tautological terms may already be beneficial 

to the result. It is important to understand that depending 

on the solving algorithm shorter but more complex 

rulesets are more difficult than longer but simpler ones. 

As such it is the point of some preprocessing techniques 

to introduce redundancies into the formula that shorten 

certain subtasks. Another intricacy is the order of 

applying certain techniques. Certain techniques may 

work better if applied after other techniques. Or it may 

be the case that one technique makes another obsolete. 

The conclusion is that applying preprocessing correctly 

is an important part of the implementation. As a whole 

preprocessing is a vital part of optimized solving. 

There are numerous preprocessing algorithms in 

literature, however, only a few of them are easily 

applicable in incremental SAT solving. We identified 

four techniques for this work, which we will define next. 

2.2.1 Subsumption 

Subsumption represents a basic but powerful 

optimization technique which allows us to remove entire 

clauses from a formula. In a CNF formula F, a clause C 

is subsumed by a clause D if the set of literals in clause C 

is a (non-strict) superset of the literals in clause D. 

Subsumed clauses obviously do not contribute to the 

logical complexity of the formula. We can remove them 

without changing whether the formula is satisfiable or 

not. 

 

2.2.2 DNF Subsumption 

Subsumption can be also used on the terms of a DNF 

formula. A term C is subsumed by a term D if the set of 

literals in C is a (non-strict) superset of the literals in 

clause D. Like subsumed clauses, subsumed terms also 

do not contribute to the logical complexity of the formula 

and cane be removed. Additionally, we can apply 

subsumption to a pair of DNF formulas connected by 

conjunction, if the terms of one DNF are a subset of the 

terms in the other DNF. 

2.2.3 Self-Subsuming Resolution 

Like subsumption, self-subsuming resolution deals 

with pairs of clauses and the overlap of their literals. 

Unlike subsumption however we are not only concerned 

with removing an entire clause, but also with 

strengthening it if removal is not possible. Clause 

strengthening happens when we remove literals from a 

clause. Suppose we have a formula with clauses  (C or l) 

and (D or -l) which represent two clauses with an added 

literal. If C subsumes D, we can simply strengthen (D or 

-l) to D. 

We prove that strengthening the clause does not 

modify the satisfiability of the formula. We again think 

of the satisfiability of a formula F containing (C or l) and 

(D or -l). Anything that satisfies clause (C or l) with the 

exception of l also satisfies D due to their relation under 

subsumption. If we assert l=false the formula has not yet 

been satisfied as clause C remains. To satisfy it one of 

the literals of C has to be satisfied which in turn satisfies 

D. If on the other hand we assert l=true, we still need to 

satisfy one literal of D. In both cases the literal -l of the 

clause (D or -l) is irrelevant to the satisfiability of the 

formula and therefore can be removed. 

2.2.4 Failed Literal Probing 

One common technique used in both preprocessing 

and solving is Unit Propagation. A Unit Clause is a 

Clause that only contains a single literal. The single 

literal of a unit clause is called a unit literal. We collect 

all unit clauses of a given formula and assume that 

variables are set to satisfy these unit clauses. Following 

the assertion on the truth value of these variables we are 

able to simplify the formula as follows. We can remove 

all the clauses that contain any of the true literals and 

remove all false literals from each clause that contains 

any of them. Some clauses get shorter and may even 

become unit clauses. Therefore, we can repeat the 

process recursively until no new unit clause emerges. If 

for some clause all of its literals get removed, then we 

have determined that the formula is unsatisfiable. 

Failed Literal Probing makes heavy use of literal 

propagation. A literal L is a failed literal with respect to a 

formula F if unit propagation derives an empty clause on 

(F and L). The logical consequence of the conflict is that 

F implies -L and we can therefore add (-L) as a unit 

clause. Furthermore, we can simplify the formula by 

removing all the clauses that contain -L and remove L 

from each clause that contains L. 

 

3. RELATED WORK 

In the world of practical SAT solving there exist 

many implementations to various algorithms. An annual 

competition called the SAT Competition [7] pits 
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submitted solvers against challenging and large 

problems. One of the tracks focusses on incremental 

solvers. Among the top-ranking solvers is CaDiCal [8]. 

CaDiCals described goal was to be an easy to understand 

and modifiable SAT solver that focusses on 

documentation.  

One early and prominent adoption of SAT solving 

algorithms is MiniSat [9] which was featured in the SAT 

competition in 2005 [10] which among other things used 

preprocessing techniques to reduce memory usage [11]. 

To our best knowledge, there is no previous 

published work regarding using preprocessing in a SAT 

based product configurator. 

4. IMPLEMENTATION DETAILS 

In this Section we will discuss some implementation 

details regarding the preprocessing algorithms described 

in Subsection 2.2. 

4.1. Subsumption 

A trivial implementation of subsumption would 

compare every clause with every other clause resulting in 

a quadradic time complexity in the number of clauses. 

The comparison would determine whether clause A has 

all literals of clause B. Realistically, a large majority of 

clauses will only contain two or three literals. Further 

implementation details split up subsumption in forward 

and backward subsumption. Forward subsumption 

checks if a clause C is subsumed by a clause D in a 

formula whereas backwards subsumption checks if 

formula contains clauses C that are subsumed by a given 

clause D. We can apply forward subsumption when 

adding new clauses such as when generating our clause 

set. Backward subsumption already assumes a complete 

formula and simply iterates over every clause. For the 

purpose of streamlining the application of techniques we 

chose the latter. 

Due to the potentially hundreds of thousands of 

clauses found in certain use cases of Merlin, a trivial 

implementation would not suffice. There are several 

ways to speed up subsumption. One common 

optimization is to only compare a clause to every clause 

that also contains its literals. To do that we keep a full 

occurrence list that maps each literal onto a set of clauses 

that contain that literal. 

For backwards subsumption we now check the size of 

the occurrence list of each literal in a clause and pick the 

smallest one. We can do this because a clause that can be 

subsumed by our previous clause must contain all its 

literals. 

The subsuming check itself can be optimized further 

as well. Trivially, if clause B is shorter than clause A, 

then clause A cannot subsume clause B. Additionally, in 

certain cases we are able to determine that subsumption 

is not possible by checking against a clause’s signature 

[8]. We calculate the signature by applying a logical or to 

the hash of each literal. The signature is intended to 

function as a lossy form of a bitmask. The number of 

literals found in formulas is generally in the 10.000 to 

40.000 range, but it is far less than the largest possible 

number represented through a 32-bit integer. To still 

make use of all 32 bits of the signature and improve the  

Algorithm 1. Self-subsuming resolution 

 
 

possible effect this method can have, we use a custom 

hash function on the integer representation of the literals.  

Using the signature we can express our exit condition as 

follows. We denote the signature of clause A with Sig(A) 

• bitwise invert Sig(B) obtaining ~Sig(B) 

• compute bitwise AND of Sig(A) and 

~Sig(B) 

• compare with zero 

In other words, the signature of a clause C that is 

subsumed by another clause D has a 1 bit in at least at 

every position the signature of clause D has. So if the 

bitwise AND of the first with the negated second is zero, 

we know that the second signature fulfills our condition 

and the clause may potentially be subsumed. We cannot 

prove whether that is actually the case without doing a 

full check. But a failure to meet this condition asserts 

that subsumption is not possible, allowing us to skip the 

full check. 

4.2. Self-subsuming Resolution 

The check for self-subsumption can easily be 

integrated into our previous subsumption algorithm but 

we allow at most one negated literal of C in the 

potentially subsumed clause D. This complicates the 

subsumption check substantially. 

This integration allows us to do both checks 

simultaneously while profiting from our previous 

improvements through the usage of an occurrence list. In 

the pseudocode detailing this combined approach in 

Algorithm 1 we can see, that if the initial check for the 

existence of the literal in the maybe subsumed clause 

fails we fall back onto a second check. We keep track of 

both the literal that may be removed due to self-

subsumption and also make sure only one such case is 

allowed. This culminates in a rather complex procedure 

that nonetheless allows us to apply these two techniques 

simultaneously. 

However, when we look at our previous 

optimizations for subsumption, multiple issues arise. 

First, the occurrence list now is not accurate anymore 

when we allow one literal to be negated. To fix this issue 

we can additionally keep track of all clauses in the 

occurrence lists of its negated literals. This diminishes 

the speedup gained through this technique but is 

necessary for the purpose of self-subsuming resolution. 
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A similar issue arises with our previously described 

method of calculating a signature for the purpose of 

exiting out of a subsumption check early. Here again we 

may choose to additionally hash the negated literal, 

though that also reduces the effectiveness of that method. 

Once these problems have been dealt with however, 

more issues arise. In the following we assume that a 

subsumption check actually occurs and is not skipped 

due to our previous optimizations. 

One thing to consider is the order in which we 

compare clauses. A clause that was strengthened may 

subsume more clauses than in its unstrengthened state. 

During backward subsumption we made use of its 

transitive property to allow us to disregard the order of 

subsumption. Strengthening clauses however breaks that 

assumption. 

Due to our optimization around occurrence lists the 

first subsumption check would have been skipped either 

way but we still need to disregard the previous result. 

This is a bigger problem that complicates our approach 

to this technique but there are two solutions. First, we 

can adapt backwards subsumption to instead work based 

on a queue. One after the other we insert clauses and 

perform a full self-subsuming resolution check against 

other clauses. Whenever a clause gets changed we 

append it to the queue. When the queue is empty we 

simply add the next not yet examined clause. This allows 

us to keep our backwards approach but may potentially 

introduce duplicate checks of the same clause. In our 

previous example we can perform the subsumption check 

on clause two with clause three (which fails), then 

strengthen due to self-subsuming resolution and lastly 

repeat the subsumption of the latter two clauses which 

now succeeds. 

Second, we may instead adapt forward subsumption. 

We may add clauses one by one with the smallest clause 

first. Then using a One-Watched-Literal approach we 

store the literal with the least occurrences. When adding 

a new clause, we simply traverse all One-Watched-

Literal lists and check for self-subsuming resolution. If 

the clause is subsumed, we do not add it at all. For the 

purpose of reusing our existing approach we integrated 

self-subsuming resolution into backward subsumption. 

5. EXPERIMENTAL EVALUATION 

During the development and evaluation of the work 

presented here multiple testing techniques were used. On 

a larger scale we used customer workspaces that were 

given to the development team of Merlin for the purpose 

of testing our efforts on real world use cases. 

Several factors went into the specifics under which 

each statistic was created. For pure tests of effectiveness 

such as the number of clauses removed by subsumption 

(see Figure 1), the actual runtime of the optimization was 

not necessarily important. If the technique did not 

remove anything at all, no implementation quirk could 

change that. After examining backward subsumption we 

did not examine forward subsumption as the end result 

should be the same. After concluding that the technique 

seemed useful enough, as with subsumption, more effort 

was put into measuring speed. Here however another 

issue arises due to the nature of the programming  

 
Fig. 1. Effectiveness of subsumption on products from the 

largest available customer workspace 

 

 

language that Merlin was developed in. Java bytecode as 

generated by the javac compiler runs on a platform--

independent virtual machine. To combat effects such as  

virtual machine warmup and other potential minimal lags 

due to first time initialization, all performance measuring 

tests were run three times back to back [12]. The 

statistics of the first two runs were discarded and only 

the third taken into consideration. Performance 

comparison tests were done back to back (i.e. test run 

with subsumption and without such as in Figure 1) in 

that same manner.  

Another important aspect of this type of data analysis 

is the consideration whether the data gathered was 

trustable in the first place. The testing conditions were 

accounted for, the code itself was validated with 

handwritten regression tests and multiple runs sought to 

eliminate any coincidental slowdowns through vm 

warmup. But is the result plausible at all? Corresponding 

analysis was largely done through finding more metrics 

to keep track of, such as clause size and literal count. We 

can for example see that the tests on the large customer 

workspace we use for performance testing builds 

products that consist of a large majority of smaller 

clauses. We previously pointed out that subsumption 

works best when the subsuming clause has few literals. 

Therefore, a clause size distribution approaching an 

exponential decay could plausibly remove 35% of 

clauses. Even though some products consist of 200.000 

clauses, they do not contain more literals than formulas 

half their size. In theory one should be able to observe a 

stark contrast between the percentage of clauses removed 

from the former. And looking at the data presented in 

Figure 1 we can see exactly that effect. Likewise, the 

other tests on a much smaller customer workspace 

revealed that even though these product formulas are 

quite small in comparison, they do in fact have many 

literals. Where earlier we had 40.000 literals for 200.000 

clauses, here we have 11.000 literals for 16.000 clauses. 

In this case we observed a drastically lower percentage 

of clauses subsumed.  

We can immediately see that on the second and last 

product that both contain over 200.000 clauses. 

Subsumption was able to remove 35\% and 38\% of 

clauses respectively, shrinking the formulas to around 

130.000. The application of the technique to this product 

took around 5 seconds. Further, there seems to be a  
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Fig. 2. Scatterplot of optimized and unoptimized runtime 

tests on the largest customer workspace available 

 

correlation between the size of the formula and both 

the runtime and number of clauses that subsumption is 

able to remove. This is plausible considering the 

quadratic nature of looking at pairs in a set.  

Next, we will more closely examine the runtime of 

the solver. We first examine what impact the techniques 

have on the formula and follow with a benchmark of a 

set of tests. To measure a possible impact on the runtime 

we perform the previous tests again and closely monitor 

the solver. Again, we use the largest workspace available 

and perform the subsumption technique. Figure 2 depicts 

a scatterplot. Each data point gathered from the tests (of 

which there are 109) is marked as a red dot. The x-

coordinate of each dot consists of the runtime of the SAT 

solver with subsumption and the y-coordinate the 

runtime without any preprocessing. The black diagonal 

line represents a reference where x = y. If the red dot is 

above the line the subsumed runtime of that test took 

longer and vice versa. Additionally, we make use of a 

logarithmic scale to magnify outliers and get a better 

distribution across the graphic. 

We can observe a clustering of results at the diagonal 

indicating that no significant speedup or slowdown 

occurred. As the runtime of the tests get higher though 

we see more fluctuation culminating in a drastic 

slowdown towards the higher end of runtime. Looking 

closer at the numbers, the total runtime of all tests with 

optimization is 77.599 seconds and 53.234 seconds 

without. We take the sum of the 95% quantile of both 

data sets to get an idea of the general speedup without 

outliers. Using the subsumption optimization, the 109 

tests have a total runtime, filtered to the 95% of lower 

values, of 35.304 seconds. Without any optimization, the 

95% quantile of the runtimes of the tests summed up is 

32.887 seconds. This data suggests that we do in fact 

have a small speedup over the course of all tests, though 

we did not consider the time taken for preprocessing. 

Even though subsumption was able to remove a large 

number of clauses, the actual speedup seems to be 

minimal though existing. 

To further examine the impact that subsumption has 

on the properties of the solver we can plot the statistics 

taken from both runs and compare them. Figure 3 shows 

that as a whole all four stats generally went up. The 

solver had to consistently restart more, even breaking a 

third restart. Interrupts, solving time and branches also 

generally went up although there are isolated cases 

where it slightly decreased. 

 
Fig. 4. Scatterplot of optimized and unoptimized runtime 

tests on a smaller customer workspace. 

 

For further data we applied the same methodology to  

a smaller customer workspace (see Figure 4). There were 

multiple noteworthy observations made. First of we have 

a large volatility in data. While the average seems to 

match with the neutral diagonal, due to the very short 

runtime of the tests we observe a far heavier spread. This 

can be explained in part due to the small runtime of these 

tests no matter the optimization. As we can see on the x 

and y axis, the tests regularly finish within a few 

milliseconds. Therefore, it is possible that the data 

contains a large amount of coincidental slowdown on 

both tests that obfuscate our measurements. 

The sum of the solving time of all tests without 

subsumption is 3.296 seconds and 2.812 seconds with 

subsumption. The same 95\% quantile of the runtime 

reveals that with optimization we have a total runtime of 

1.497 seconds whereas without optimization we get 

1.846 seconds. As opposed to the large workspace here 

we see several tests that feature substantial speedups 

using our optimization. While the runtime of these tests 

is still very small and quite scattered, it does seem like 

there is a potential for speedup. Though there is also a 

range of tests that are slower with optimization.  

There are several possible explanations for these 

results. First, subsumed clauses are able to be deleted 

because they do not contribute to the complexity of the 

formula, but provide redundancies that may allow a 

solver to find contradictions sooner, therefore offsetting 

the additional clauses that need to be evaluated. Further, 

as we will discuss later, a small number of DNF clauses 

may contribute to a large part of the complexity of a 

formula than a large number of Or clauses. We assume 

that the main problem of this technique is that it is not 

able to reduce the number of literals found in the clauses. 

Despite reducing the clause size of two products in the 

large workspace from 200.000 to 130.000, the number of 

literals stays constant at 40.000. However, because 

Merlin contains an incremental solver, removing literals 

in of itself is not allowed. We can at best propagate them 

and add them as unit clauses. 

For now, though we suppose that subsumption is a 

marginally effective preprocessing mechanism for our 

use case under the condition that the number of clauses is 

above a certain threshold and the ratio between the 

number of clauses and the number of literals is anywhere 

above 2:1. Additionally, further implementation 

improvements such as literal sorting may be necessary to 

further speed up of the subsumption check. 
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Fig. 3. Solver statistics comparing subsuming (blue) and 

default (orange) benchmarks 

 

5.1. Self-Subsuming Resolution 

In our experiments, the technique was not able to 

strengthen any clause and the number of subsumed 

clauses is equal to number of simply subsumed clauses. 

We may additionally examine the number of clauses we 

are able to strengthen in another workspace but the 

results seem to be the same. Applying the technique to 

the smaller workspace used in other benchmarks gave 

the same results which we do not elaborate on again. 

We may consider the plausibility of this technique. In 

order for it to work at all we need two clauses that are 

nearly identical but one specific literal has to be negated. 

Even across products with 200.000 clauses this did not 

seem to occur even once. While we would be able to 

create a situation in which we may strengthen a clause, 

this in of itself seems to not occur coincidentally in the 

specific use cases that customers of Merlin work with. 

5.2. Failed Literal Probing 

We probed a small customer workspace for failed 

literals. We observed that although some products 

contain over 11.000 literals, none of them have been 

determined to be failed. We repeated the check on the 

biggest customer workspace we have available, however 

we get no positive results. The quite strict conditions of 

failed literals seem to not be fulfilled, even if the product 

consists of over 200.000 clauses.  

 

Table 1. Table displaying the number of DNF Formulas 

contained in a test, the number of combined DNF Terms 

and the number of DNF Terms after subsumption was 

applied 

 

It seems much more likely that a failed literal is created 

as a result of clause strengthening itself. And while failed 

literal elimination in theory does just that, if nothing is 

found, there is no propagation and thus no clause 

strengthening. As such, failed literal probing on its own 

does not seem like a promising preprocessing mechanism 

in the context of Merlin. We can clearly see that failed 

literal probing is unable to modify the formula. 

Therefore, we conclude that failed literal probing is not 

useful for our use case. 

 

5.3. DNF Subsumption 

We now discuss the effectiveness of subsumption on 

DNF formulas. We first apply subsumption of DNF 

Terms to our smaller workspace again to check for the 

number of terms we are able to remove. Subsumption 

was not able to remove any term. The same result can be 

seen in any of the other test products, though that is 

easily explainable by the miniscule number of terms. 

Previous benchmarks showed us that subsumption on 

less than 16.000 clauses/terms only had a minor effect. 

And here we have the added problem that these terms are 

split up into eight individual groups. 

When applying the technique to our large workspace 

however we see a massive reduction in the number of 

terms. Table 1 displays the number of clauses, terms and 

terms after applying subsumption. We can for example 

see that the second to last product contained over 70.000 

terms of which more than 45.000 (64% of terms) were 

subsumed. For comparison, from a relative perspective 

this is more than the subsumption applied to Or Clauses 

was able to remove. 

We also run the benchmark and measure the solving 

time required for each test in a large workspace and 

apply the subsumption technique to DNF Clauses. In 

Figure 5 we can see a clear slowdown of the solving 

speed. While faster tests retained their runtime, the 

slower ones became even slower. We can sum up the 

total runtime and see that without optimization we get a 

runtime of 53.234 seconds and with subsumption we get 

121.075 seconds. As the small workspace did not find 

any subsumed terms a runtime benchmark was 

unnecessary. 

5.4. Discussion of the Results 

We sought to find techniques for optimizing formulas in 

incremental SAT. In our research we examined 

subsumption, self-subsuming resolution and failed literal 

probing and applied these to our use case. There were 

other techniques that were considered but ultimately 

disregarded. Pure literal elimination is a technique 

commonly used in regular SAT and is not directly 

applicable to incremental SAT. Further, blocked clause 

elimination was considered for a closer examination as 

there is existing research on its application in 

incremental SAT. However due to the requirements of 

inprocessing which we do not apply in this work, the 

technique was disregarded as well. We implemented the 

subsumption technique both for CNF and DNF type 

formulas. In both cases major reductions in formula size 

can be observed depending on the ratio of clauses to the  
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Fig. 5. Scatterplot of optimized and unoptimized runtime 

tests on a small customer workspace using subsumption 

of DNF Clauses 

 

number of unique literals and the total size of the 

formula. Further measuring the runtime of the solving 

step, we did not observe a general pattern of speedup or 

slowdown though both occurred. In a workspace with 

products that generally have 200.000 clauses and 40.000 

literals we observed a trend towards slowing down in 

cases where the runtime of the test was already large. 

However, in a smaller workspace we instead 

occasionally observed a speedup. The biggest discovery 

was the amount of terms that could be removed from 

DNF Clauses through the subsumption technique as it 

broke 65% in one case. Our benchmarks of self-

subsuming resolution and failed literal elimination 

showed that neither are able to modify the formula at all. 

One aspect of the subsumption technique that has not 

been detailed is the potential for its reduction in memory 

usage. Among the issues faced with running Merlin is 

the runtime overhead. We have seen that the number of 

clauses may exceed 200.000. To have as many clauses 

present in memory sets certain restrictions on the 

hardware that may exceed what is available. This 

underlying problem is a major concern for Merlin at this 

time. The computer that was used to implement 

preprocessing techniques itself had to have its RAM 

increased past 8GB to 32GB to meet the requirements for 

the server infrastructure. If the subsumption technique is 

applied, the potential for reducing this barrier of entry 

may be substantial. To potentially achieve the desired 

result, we propose the use of a forward subsumption 

technique as common implementations of backward 

subsumption may leave clauses in memory. This may be 

used for both DNF Clauses as well as Or Clauses. 

 

6. CONCLUSION 

 

In this paper we discussed various approaches to 

preprocess SAT formulas in a product configurator. The 

conclusion drawn from the results is that while the 

subsumption technique on CNF and DNF formulas did in 

fact show great effect in reducing the formula size, this 

partially resulted in a slowdown. In other cases, such as 

when applied to smaller CNF formula, subsumption 

showed occasional speedup. Lastly, we presume the 

potential for reducing the memory usage through the 

application of these techniques. 

In the work we primarily looked at the end result of 

having a formula that has been preprocessed. Runtime of 

preprocessing itself has not been a major factor in our 

benchmarks and was never directly addressed. While 

optimizations for individual techniques were examined 

more closely, there is still major speedup potential. The 

idea of using a module which requires conversion of 

rules to and from also does not correspond to the nature 

of finding optimal and fast solutions. Instead, we focused 

our efforts on testing whether these techniques were 

useful at all. 

One thing that could have been done better is a 

broader examination of how other SAT solvers tackle the 

issue of preprocessing in incremental SAT. For the most 

part only theoretical approaches were researched. It was 

also shown that the lack of inprocessing did not allow for 

certain techniques to be applied. There are more ways to 

implement classical SAT preprocessing techniques by 

reintroducing previously removed literals should they be 

used in a newly introduced clause. Any technique that 

makes use of this idea was not further examined. Further, 

an analysis regarding the complexity of a formula in 

context of Merlin’s SAT solver has not been conducted. 

Techniques that potentially increase the clause size but 

reduce complexity were not examined as complexity was 

not a quantified metric in our research.  

This work represents a first step to implementing 

preprocessing in a SAT based product configurator 

Merlin. Several techniques were examined but there 

were also restrictions set in place. There is potential for 

optimizing the memory usage of Merlin by removing 

clauses with forward subsumption before they get added. 

There may also be value in researching more techniques 

used in other incremental SAT solvers including 

techniques that make use of inprocessing. 
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