
 

Abstract: Design automation systems often mimic 

human designers and implement routine design 

activities. Beside this, the idea of such knowledge-based 

engineering is to support developers in the analysis and 

syntheses of complex engineering artifacts. An instance 

of this is product configuration. A central aspect of 

knowledge-based engineering is its ability to draw 

conclusions about the design context. For this inference, 

different reasoning techniques have been proposed. One 

uses constraint satisfaction problems as model-based 

approach. In the present contribution, the authors report 

about a case-study about the implementation of a 

constraint-based configuration system with onboard 

resources of a computer aided design system on the 

example of a locating fixture. 
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1. INTRODUCTION 

One of the most intense reported use cases of 

knowledge-based engineering (KBE) systems is, from 

the beginning, Computer aided fixture design (CAFD) 

[1-3]. KBE is an approach to automate and support 

design tasks, like adapting a product to new 

requirements, choosing a variant out of a solution space 

or automaticly designing products and components with 

a rich body of explicit and formalized laws of creation. 

[4-6].  

The ever increasing amount of product configurators 

indicates a widespread application of KBE techniques 

especially in configuration design, i.e., the composition 

of a system out of a set of predefined building blocks that 

are linked via standardized interfaces [7]. Basically, KBE 

can serve to get to a product specification or bill of 

materials, independently from geometric models [8, 9]. 

But KBE may also integrate geometric modeling tools, 

like computer aided design (CAD) systems either for 

visualization purposes or for further processing of the 

geometry [10, 11].  

To effectively find solutions for configuration design 

problems, constraint satisfaction problems (CSP) are 

applied as basis for model-based inference [12]. In short, 

a CSP consists of a set of finite domains as containers for 

variables and their possible parameter values, and a set 

of constraints that relate the domains and specify which 

combinations of values of each variable are allowed [13, 

14]. 

A multitude of proprietary software packages is 

available on market for implementing CSP and CAD. 

Many CAD systems offer functionalities for knowledge-

based product modeling, but there is still a lack of 

application examples and case studies in literature. Thus, 

this contribution follows the question to what extent and 

with which scripting a CSP-based configurator can be 

implemented directly into a CAD system, using its 

onboard resources. The case study that was performed 

for this article on the example of a locating fixture was 

meant to test the above methods and illustrate their 

application in a comprehensible way in order to motivate 

other designers and engineers to use constraint-based 

configuration in their everyday business.  

The remainder of the article is organized as follows: 

Section 2 presents a brief theoretical background for 

knowledge-based CAD as well as constraint-based 

reasoning and configuration design. The subsequent 

section 3, conceptualizes the implementation of the CSP 

applying the application programming interface of a 

CAD system in general. Section 4 then presents the 

locating fixture configurator before the final section 5 

discusses findings and gives a conclusion. 

2. THEORETICAL BACKGROUND 

2.1. Knowledge-Based CAD 

Knowledge-based CAD is to be understood as 

paradigm shift in solution oriented product modeling. It 

forces designers not to have a single variant in mind that 

has to be designed but a solution space from which this  

variant is reasoned [15]. The basis for this is the ability 

to add pieces of domain and control knowledge to the 

geometric model [16, 17]. Amongst others, domain 

knowledge in the form of geometric and logical 

constraints, parameter tables, features, templates and 

design rules are common techniques that are available in 

today’s CAD systems. 
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In contrast to this domain knowledge, control 

knowledge formalizes the way to explore the solution 

space. Therefore, the three traditional reasoning types 

known from expert systems, i.e. rule-based, model-based 

and case-based reasoning are also applicable in 

knowledge-based CAD [16, 17]. 

2.2. Constraint-Based Reasoning and 

Configuration Design 

For modeling physical or engineering contexts, 

constraint networks use a representation consisting of 

domains for variables and their possible values and 

constraints as relation between them. This structure can 

be written as graph where the domains form the nodes 

and the constraints the arcs [12].  

 
Fig. 1. Map Coloring Problem modeled as CSP 

 

If now input values are applied to the constraint 

network the values of the other domains can be  

calculated on their basis which is knowln as constraint 

propagation. Beside this, the solution of configuration 

problems is a common task where constraint networks 

are used for reasoning. The map coloring problem  

(Fig. 1) is an example for such a task [13].  

There exist different solutions strategies, some of 

them use the graph nature and the principle of local 

consistency of the constraint network to raise the 

performance of the solution process. E.g., arc 

consistency takes the value assignment of a domain and 

tests it against all other neighboring domains that are 

directly connected by constraints. Inconsistent values are 

then immediately removed. Referring to the example of 

Fig. 1, when the domain L1 is occupied with grey as 

input value, arc consistency would remove grey from L2 

and L4. The advantage is that enforcing local consistency 

does not generate obviously erroneous value 

assignments, like e.g. generate-and-test would do [14].  

Configuration design belongs to the synthetic design 

tasks. Particularly here, developers compose a system out 

of predefined building blocks or modules which are 

assembled by known, ideally standardized interfaces [6].  

Still popular and compatible with template 

techniques, propose-and-revise is a suitable problem-

solving technique (Fig. 2). E.g., the KBE system uses its 

formalized knowledge about system creation and 

templates to suggest an initial configuration which is 

then verified against formalized requirements. The 

Truth-Maintenance-System as essential part of the 

problem-solving mechanism, detects these violations and 

is then able to counteract this by changing the 

configuration in a predefined way out of a reaction pool 

[23]. 

 
Fig. 2. Propose and Revise as Problem-Solving Strategy 

 

If alternative reactions are available, these contain 

additional weighting so that the Truth-Maintenance-

Systems is able to prioritize. If a reaction does not lead to 

constraint satisfaction, the Truth-Maintenance-System 

will return to this point and test the next reaction [24].  

To use such problem-solving and reasoning 

mechanisms in a KBE system, they can be attached e.g. 

to a product model. In the simplest stage this can be a 

variant bill of materials where the constraint-based 

reasoning is used to determine product options. 

Advanced approaches work directly on the geometric 

CAD model [11, 16]. Additionally, constraint-based 

approaches are also capable of configuring non-

geometric data, e.g. corresponding manufacturing 

processes for chosen product features [25] or service 

components of a product-service system [26, 27]. 

3. IMPLEMENTING A CSP-BASED IN-CAD 

CONFIGURATOR 

The basic goal of a constraint-based configurator is to 

collapse the solution space to a single (best fitting) 

variant. Before that, it is necessary to translate the design 

problem into a configuration problem. 

 

 
Fig. 3. General Routine for Constraint Handling 

 

 The first step is to model the domains which can be 

abstracted to a list of variables and their values as groups 

of related data. Many of today’s CAD systems share 

Visual Basic for Applications (VBA) as Application 

Programming Interface, e.g. for macro programming. In 
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VBA, domains could be basically implemented as either 

collections / array lists or dictionaries. The latter offer 

some advantages since all dictionary properties, 

including the key values, are writable and retrievable. 

Beside strings, dictionaries also can handle nearly every 

other type of key except arrays and dictionary methods 

offer the possibility to check if a key value is already 

existing. Compared to collections / array lists, 

dictionaries are a bit slower in creation but significantly 

faster in computation. 

Dictionaries are also suitable to represent the 

constraints and their handling in a queue. A distinction is 

made between unary and binary constraints. The first 

propagate input values for collapsing their involved 

domains. The latter relate two neighboring domains to 

each other. In order to implement the above mentioned 

arc consistency, the change of a domain must trigger the 

addition of attached constraints to the queue (Fig. 3). 

4. LOCATING FIXTURE CONFIGURATOR 

In the following, the above methods are tested on the 

example of a locating fixture. The implementation is 

further illustrated on an exemplary implementation into 

the CAD system Autodesk Inventor. Sub-section 4.1 

contains the description of the configuration task itself, 

4.2 then presents preliminary considerations about data 

repositories and constraint handling before 4.3 illustrated 

the CAD implementation. 

4.1. Task Description 

Before a part can be machined properly, it needs to 

be located explicitly so that machine coordinate system 

and workpiece coordinate system coincide. Locating 

fixtures that are positioned and calibrated on the machine 

table support workers here. Usually, such fixtures do also 

contain elements for clamping which are left out in the 

further example. In literature, locating fixtures are 

organized according to their locating principle which 

allocates locating machine elements to the reference 

surfaces of the part. This assignment is a suitable basis 

for the propose-and-revise logic to get to an initial 

configuration of the fixture. 

 
Fig 4. Locating Principle Pin/Pin/Rest 

In this case study, the fixture follows the principle 

pin/pin/support (Fig. 4), where the locating pin is the 

primary locating datum, the diamond pin the secondary 

and the rest pin the tertiary one. The corresponding 

workpiece surfaces are also depicted in Fig. 4, i.e. the 

cylinder face of primary and secondary locating datum, 

as well as the plane face of the tertiary one. The plane 

surfaces of primary and secondary datum function as 

reference for the determination of the height position of 

the single machine elements and the global positioning 

on the base plate. The component manifold for the 

assembly is illustrated in Fig. 5. 

 

 
Fig. 5 Component Manifold and Assembly Structure 

 

4.2. Preliminary Considerations 

From the above it can be concluded that the 

following parameters need to be processed by the CSP: 

 

• Diameter of primary and secondary datum face  

• Height difference between primary and secondary 
datum 

• Height difference between secondary and tertiary 
datum 

• X-Y-position of secondary datum related to 
primary datum (for later collision check and 
positioning on the base plate) 

• X-Y-Position of tertiary datum related to primary 
datum   (for later collision check and positioning 
on the base plate) 
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Fig 6. Constraint Network (Excerpt) 

The CSP itself is constituted by domains containing 

the relevant machine elements. As shown in the excerpt 

of the constraint network in Fig. 6, the domains contain 

beside the article number of the machine element as key 

all other relevant dimensional data to reason based on 

mounting diameters, interface dimensions between the 

single machine elements and their particular height. Two 

additional domains are introduced for the calculation of 

the height differences between the three locating datums 

which later will serve for the height comparison of the 

assembled locating groups.  

From a process perspective, the first configuration 

step after initializing the pin/pin/rest template is to 

propagate unary constraints in order to reason about the 

necessary locating machine elements. This is done by 

checking e.g. constraint C2 from Fig. 6, which collapses 

the domain of the locating / diamond pin to a suitable 

variant. If no one is found, an error should be fed back, if 

there is a siutable variant, the next constraint to be 

propagated is C3 which connects the locating mchine 

element to its connecting ring via their diameter 

parameters. Parallel to this, the according heights are 

added to the domain tps. After determining the locating 

machine elements and their connecting parts, the 

constraint C1 is propagated to calculate the heigth 

differences between the single assemblies. The reasoner 

then adds up to four spacers and height cylinders where 

necessary to compensate this.  

4.3. VBA Implementation in Autodesk Inventor 

 

Fig 7. Class Module for Machine Element Domain 

Declaration 

A necessary step in the VBA implementation is the 

declaration of public class modules for domains and 

constraints and their respecting properties as shown in 

Fig. 7. Note that not every property needs to be filled in 

when the CSP is initialized as the dictionaries allow 

empty arguments. 

In a first version of the configuration system, the 

constraint list was hardcoded as shown in the excerpt in 

Fig. 8. As VBA does not allow for creating variable 

names as combination of strings and integers at runtime, 

this approach is cumbersome as every argument 

combination needs to be forseen and coded.  

Following this, a second version of the configuration 

system works with a domain and constraint list which is 

stored in an external data repository, here an excel 

spreadsheet. After the configuration system is started, the 

system imports the domains and constraints from the 

spreadsheet to the working memory and then populates 

the domains from this representation. Additionally to the 

data to be handled by the CSP, the worksheets contains 

adjacent data for the later CAD assembly, e.g. names of 

iMates (semi-automatic geometric constraints in 

Inventor) that are then triggered after adding a 

component. 

The constraints are imported in a similar way. As 

operators, the system handles equality, inequality and 

math constraints. 

 

 

Fig 8. Unary Constraints derived from Locating Data 

After the domains have been populated, the system 

waits for the first user input. After a locating surface was 

chosen and submitted to the configuration system, the 

corresponding unary constraint is added to the queue and 

propagated. The command call un_constraints from  

Fig. 8 shows the respective comparison of the domain 

properties and the geometric parameters. After 

propagation, the constraint is removed from the queue.  

Following the principle of local consistency, all 

constraints attached to the affected domain are added to 

the queue as well and propagated afterwards. If another 

domain is restricted, e.g. as mentioned for the constraint 

C2 before, the corresponding domain is collapsed and the 

firther involved constraints are added to the queue.  
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Fig 9. Completely Configured Locating Fixture 

The solution strategy for bridging the height 

difference between the three locating machine elements 

is a bit different and follows a backtracking strategy. 

Backtracking means in this context, that the system 

proposes an initial combination of two spacer elements 

as such a combination is in most cases sufficient to 

connect the machine elements to the base plate. The 

system then test sequentially the combinations of the 

spacers. If the resulting solution set gets empty, the 

configuration is discarded and the system returns to the 

last known state where all constraints could be satisfied. 

Afterwards it tests the next alternative. Again, if the 

solution set is empty the process is repeated. If in 

contrast a combination of spacers is found that does not 

violate any constraint, it is checked whether a 

combination within a turret assembly can be substituted 

by a single spacer. If multiple spacer configurations are 

available, the one with minimum height is chosen. 

The later CAD integration functions as a model 

generator, which means that the system starts with an 

empty assembly file. To this, all chosen machine 

elements are added and automatically related to each 

other using the usual geometric constraints like mate, 

flush or concentric. Fig. 9 shows an exemplarily 

configured assembly, where the spaces could be 

collapsed to one in each turret assembly. The user has 

already arranged the turrets on the base plate as this step 

has not been automated so far. 

6. DISCUSSION AND CONCLUSION 

The implemented configurator fulfills its purpose 

reliably. An extension to other locating principles beside 

pin/pin/rest would be a first point for future extension of 

the system. The management of additional machine 

elements or other sizes is convenient by adding them to 

the corresponding part catalogue spreadsheets.  

Autodesk Inventor basically offers different 

mechanics to implement reasoning. One of them is the 

iLogic scripting language that is meant to code design 

rules. Such a rule-based representation is, in comparison 

the the illustrated constraint-based approach, requires 

more code and usually leads to a less flexible programm 

flow as could be realized by the constraint queueing. 

Additionally, the maintainability of rule-based 

approaches suffers as in the case of a modification of the 

rule-base each rule needs to be checked for consistency. 

The restriction the the onboard ressources of the 

CAD system has also disadvantages: As mentioned 

before, the code is less economic as VBA does not allow 

to create variables (and user interface elements) at 

runtime. The choice of advanced programming 

environments that attach to the CAD system and remote 

control its functions would be favorable. A possible 

avenue here is the use of the phyton scripting language.  

The example of the locating fixture is a good 

placeholder for many configuration problems as it uses 

equalities, inequalities and math constraints to get to a 

solution. This is transferable for many other configurable 

CAD assemblies. The design knowledge in this 

particular case was already formalized to a large extend 

and easy obtainable. As CAFD is an early working field 

for KBE systems, the abstraction of the design problem 

to a configuration problem was easy using the restriction 

that the locating principle was fixed. If the system should 

be able to abstract the locating principle by itself, 

different geometric data is necessary is to be included 

into the analyzis, not only the diameters and height 

positions. A piece of data is e.g. the orientation of 

drillings. In the example of the case study these are all 

parallel to each other, which is not necessarily the case.  

Another avenue for future work in this field is the 

coupling of different solutionstrategies and reasoning 

mechanisms to more complex solvers. E.g. for 

performance optimizations and the application for large 

solution spaces, the integration of shortcuts and e.g. case-

based reasoning is promising. Another question is to 

integrate the CAD model e.g. by reobtaining geometric 

data as further input to the CSP after the initial 

configuration has been proposed. Modeling guidelines 

and best practices for such applications could promote 

the application of KBE techniques in general. 
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