

Abstract: Design automation systems often mimic

human designers and implement routine design

activities. Beside this, the idea of such knowledge-based

engineering is to support developers in the analysis and

syntheses of complex engineering artifacts. An instance

of this is product configuration. A central aspect of

knowledge-based engineering is its ability to draw

conclusions about the design context. For this inference,

different reasoning techniques have been proposed. One

uses constraint satisfaction problems as model-based

approach. In the present contribution, the authors report

about a case-study about the implementation of a

constraint-based configuration system with onboard

resources of a computer aided design system on the

example of a locating fixture.

Key Words: Knowledge-Based Engineering, Product

Configuration, Constraint Satisfaction Problems,

Computer Aided Design, Solution Space Modeling

1. INTRODUCTION

One of the most intense reported use cases of

knowledge-based engineering (KBE) systems is, from

the beginning, Computer aided fixture design (CAFD)

[1-3]. KBE is an approach to automate and support

design tasks, like adapting a product to new

requirements, choosing a variant out of a solution space

or automaticly designing products and components with

a rich body of explicit and formalized laws of creation.

[4-6].

The ever increasing amount of product configurators

indicates a widespread application of KBE techniques

especially in configuration design, i.e., the composition

of a system out of a set of predefined building blocks that

are linked via standardized interfaces [7]. Basically, KBE

can serve to get to a product specification or bill of

materials, independently from geometric models [8, 9].

But KBE may also integrate geometric modeling tools,

like computer aided design (CAD) systems either for

visualization purposes or for further processing of the

geometry [10, 11].

To effectively find solutions for configuration design

problems, constraint satisfaction problems (CSP) are

applied as basis for model-based inference [12]. In short,

a CSP consists of a set of finite domains as containers for

variables and their possible parameter values, and a set

of constraints that relate the domains and specify which

combinations of values of each variable are allowed [13,

14].

A multitude of proprietary software packages is

available on market for implementing CSP and CAD.

Many CAD systems offer functionalities for knowledge-

based product modeling, but there is still a lack of

application examples and case studies in literature. Thus,

this contribution follows the question to what extent and

with which scripting a CSP-based configurator can be

implemented directly into a CAD system, using its

onboard resources. The case study that was performed

for this article on the example of a locating fixture was

meant to test the above methods and illustrate their

application in a comprehensible way in order to motivate

other designers and engineers to use constraint-based

configuration in their everyday business.

The remainder of the article is organized as follows:

Section 2 presents a brief theoretical background for

knowledge-based CAD as well as constraint-based

reasoning and configuration design. The subsequent

section 3, conceptualizes the implementation of the CSP

applying the application programming interface of a

CAD system in general. Section 4 then presents the

locating fixture configurator before the final section 5

discusses findings and gives a conclusion.

2. THEORETICAL BACKGROUND

2.1. Knowledge-Based CAD

Knowledge-based CAD is to be understood as

paradigm shift in solution oriented product modeling. It

forces designers not to have a single variant in mind that

has to be designed but a solution space from which this

variant is reasoned [15]. The basis for this is the ability

to add pieces of domain and control knowledge to the

geometric model [16, 17]. Amongst others, domain

knowledge in the form of geometric and logical

constraints, parameter tables, features, templates and

design rules are common techniques that are available in

today’s CAD systems.

DESIGN AUTOMATION CASE STUDY:

MODULAR LOCATING FIXTURE

Paul Christoph Gembarski
Institute of Product Development, Leibniz Universität Hannover,

An der Universität 1, 30823 Garbsen, Germany

10th International Conference on Mass Customization and
Personalization – Community of Europe (MCP ‐ CE 2022)
Toward the Sustainable, User‐Centric and Smart
Industry 5.0
September 21‐23, 2022, Novi Sad, Serbia

39

In contrast to this domain knowledge, control

knowledge formalizes the way to explore the solution

space. Therefore, the three traditional reasoning types

known from expert systems, i.e. rule-based, model-based

and case-based reasoning are also applicable in

knowledge-based CAD [16, 17].

2.2. Constraint-Based Reasoning and

Configuration Design

For modeling physical or engineering contexts,

constraint networks use a representation consisting of

domains for variables and their possible values and

constraints as relation between them. This structure can

be written as graph where the domains form the nodes

and the constraints the arcs [12].

Fig. 1. Map Coloring Problem modeled as CSP

If now input values are applied to the constraint

network the values of the other domains can be

calculated on their basis which is knowln as constraint

propagation. Beside this, the solution of configuration

problems is a common task where constraint networks

are used for reasoning. The map coloring problem

(Fig. 1) is an example for such a task [13].

There exist different solutions strategies, some of

them use the graph nature and the principle of local

consistency of the constraint network to raise the

performance of the solution process. E.g., arc

consistency takes the value assignment of a domain and

tests it against all other neighboring domains that are

directly connected by constraints. Inconsistent values are

then immediately removed. Referring to the example of

Fig. 1, when the domain L1 is occupied with grey as

input value, arc consistency would remove grey from L2

and L4. The advantage is that enforcing local consistency

does not generate obviously erroneous value

assignments, like e.g. generate-and-test would do [14].

Configuration design belongs to the synthetic design

tasks. Particularly here, developers compose a system out

of predefined building blocks or modules which are

assembled by known, ideally standardized interfaces [6].

Still popular and compatible with template

techniques, propose-and-revise is a suitable problem-

solving technique (Fig. 2). E.g., the KBE system uses its

formalized knowledge about system creation and

templates to suggest an initial configuration which is

then verified against formalized requirements. The

Truth-Maintenance-System as essential part of the

problem-solving mechanism, detects these violations and

is then able to counteract this by changing the

configuration in a predefined way out of a reaction pool

[23].

Fig. 2. Propose and Revise as Problem-Solving Strategy

If alternative reactions are available, these contain

additional weighting so that the Truth-Maintenance-

Systems is able to prioritize. If a reaction does not lead to

constraint satisfaction, the Truth-Maintenance-System

will return to this point and test the next reaction [24].

To use such problem-solving and reasoning

mechanisms in a KBE system, they can be attached e.g.

to a product model. In the simplest stage this can be a

variant bill of materials where the constraint-based

reasoning is used to determine product options.

Advanced approaches work directly on the geometric

CAD model [11, 16]. Additionally, constraint-based

approaches are also capable of configuring non-

geometric data, e.g. corresponding manufacturing

processes for chosen product features [25] or service

components of a product-service system [26, 27].

3. IMPLEMENTING A CSP-BASED IN-CAD

CONFIGURATOR

The basic goal of a constraint-based configurator is to

collapse the solution space to a single (best fitting)

variant. Before that, it is necessary to translate the design

problem into a configuration problem.

Fig. 3. General Routine for Constraint Handling

 The first step is to model the domains which can be

abstracted to a list of variables and their values as groups

of related data. Many of today’s CAD systems share

Visual Basic for Applications (VBA) as Application

Programming Interface, e.g. for macro programming. In

40

VBA, domains could be basically implemented as either

collections / array lists or dictionaries. The latter offer

some advantages since all dictionary properties,

including the key values, are writable and retrievable.

Beside strings, dictionaries also can handle nearly every

other type of key except arrays and dictionary methods

offer the possibility to check if a key value is already

existing. Compared to collections / array lists,

dictionaries are a bit slower in creation but significantly

faster in computation.

Dictionaries are also suitable to represent the

constraints and their handling in a queue. A distinction is

made between unary and binary constraints. The first

propagate input values for collapsing their involved

domains. The latter relate two neighboring domains to

each other. In order to implement the above mentioned

arc consistency, the change of a domain must trigger the

addition of attached constraints to the queue (Fig. 3).

4. LOCATING FIXTURE CONFIGURATOR

In the following, the above methods are tested on the

example of a locating fixture. The implementation is

further illustrated on an exemplary implementation into

the CAD system Autodesk Inventor. Sub-section 4.1

contains the description of the configuration task itself,

4.2 then presents preliminary considerations about data

repositories and constraint handling before 4.3 illustrated

the CAD implementation.

4.1. Task Description

Before a part can be machined properly, it needs to

be located explicitly so that machine coordinate system

and workpiece coordinate system coincide. Locating

fixtures that are positioned and calibrated on the machine

table support workers here. Usually, such fixtures do also

contain elements for clamping which are left out in the

further example. In literature, locating fixtures are

organized according to their locating principle which

allocates locating machine elements to the reference

surfaces of the part. This assignment is a suitable basis

for the propose-and-revise logic to get to an initial

configuration of the fixture.

Fig 4. Locating Principle Pin/Pin/Rest

In this case study, the fixture follows the principle

pin/pin/support (Fig. 4), where the locating pin is the

primary locating datum, the diamond pin the secondary

and the rest pin the tertiary one. The corresponding

workpiece surfaces are also depicted in Fig. 4, i.e. the

cylinder face of primary and secondary locating datum,

as well as the plane face of the tertiary one. The plane

surfaces of primary and secondary datum function as

reference for the determination of the height position of

the single machine elements and the global positioning

on the base plate. The component manifold for the

assembly is illustrated in Fig. 5.

Fig. 5 Component Manifold and Assembly Structure

4.2. Preliminary Considerations

From the above it can be concluded that the

following parameters need to be processed by the CSP:

• Diameter of primary and secondary datum face

• Height difference between primary and secondary
datum

• Height difference between secondary and tertiary
datum

• X-Y-position of secondary datum related to
primary datum (for later collision check and
positioning on the base plate)

• X-Y-Position of tertiary datum related to primary
datum (for later collision check and positioning
on the base plate)

41

Fig 6. Constraint Network (Excerpt)

The CSP itself is constituted by domains containing

the relevant machine elements. As shown in the excerpt

of the constraint network in Fig. 6, the domains contain

beside the article number of the machine element as key

all other relevant dimensional data to reason based on

mounting diameters, interface dimensions between the

single machine elements and their particular height. Two

additional domains are introduced for the calculation of

the height differences between the three locating datums

which later will serve for the height comparison of the

assembled locating groups.

From a process perspective, the first configuration

step after initializing the pin/pin/rest template is to

propagate unary constraints in order to reason about the

necessary locating machine elements. This is done by

checking e.g. constraint C2 from Fig. 6, which collapses

the domain of the locating / diamond pin to a suitable

variant. If no one is found, an error should be fed back, if

there is a siutable variant, the next constraint to be

propagated is C3 which connects the locating mchine

element to its connecting ring via their diameter

parameters. Parallel to this, the according heights are

added to the domain tps. After determining the locating

machine elements and their connecting parts, the

constraint C1 is propagated to calculate the heigth

differences between the single assemblies. The reasoner

then adds up to four spacers and height cylinders where

necessary to compensate this.

4.3. VBA Implementation in Autodesk Inventor

Fig 7. Class Module for Machine Element Domain

Declaration

A necessary step in the VBA implementation is the

declaration of public class modules for domains and

constraints and their respecting properties as shown in

Fig. 7. Note that not every property needs to be filled in

when the CSP is initialized as the dictionaries allow

empty arguments.

In a first version of the configuration system, the

constraint list was hardcoded as shown in the excerpt in

Fig. 8. As VBA does not allow for creating variable

names as combination of strings and integers at runtime,

this approach is cumbersome as every argument

combination needs to be forseen and coded.

Following this, a second version of the configuration

system works with a domain and constraint list which is

stored in an external data repository, here an excel

spreadsheet. After the configuration system is started, the

system imports the domains and constraints from the

spreadsheet to the working memory and then populates

the domains from this representation. Additionally to the

data to be handled by the CSP, the worksheets contains

adjacent data for the later CAD assembly, e.g. names of

iMates (semi-automatic geometric constraints in

Inventor) that are then triggered after adding a

component.

The constraints are imported in a similar way. As

operators, the system handles equality, inequality and

math constraints.

Fig 8. Unary Constraints derived from Locating Data

After the domains have been populated, the system

waits for the first user input. After a locating surface was

chosen and submitted to the configuration system, the

corresponding unary constraint is added to the queue and

propagated. The command call un_constraints from

Fig. 8 shows the respective comparison of the domain

properties and the geometric parameters. After

propagation, the constraint is removed from the queue.

Following the principle of local consistency, all

constraints attached to the affected domain are added to

the queue as well and propagated afterwards. If another

domain is restricted, e.g. as mentioned for the constraint

C2 before, the corresponding domain is collapsed and the

firther involved constraints are added to the queue.

42

Fig 9. Completely Configured Locating Fixture

The solution strategy for bridging the height

difference between the three locating machine elements

is a bit different and follows a backtracking strategy.

Backtracking means in this context, that the system

proposes an initial combination of two spacer elements

as such a combination is in most cases sufficient to

connect the machine elements to the base plate. The

system then test sequentially the combinations of the

spacers. If the resulting solution set gets empty, the

configuration is discarded and the system returns to the

last known state where all constraints could be satisfied.

Afterwards it tests the next alternative. Again, if the

solution set is empty the process is repeated. If in

contrast a combination of spacers is found that does not

violate any constraint, it is checked whether a

combination within a turret assembly can be substituted

by a single spacer. If multiple spacer configurations are

available, the one with minimum height is chosen.

The later CAD integration functions as a model

generator, which means that the system starts with an

empty assembly file. To this, all chosen machine

elements are added and automatically related to each

other using the usual geometric constraints like mate,

flush or concentric. Fig. 9 shows an exemplarily

configured assembly, where the spaces could be

collapsed to one in each turret assembly. The user has

already arranged the turrets on the base plate as this step

has not been automated so far.

6. DISCUSSION AND CONCLUSION

The implemented configurator fulfills its purpose

reliably. An extension to other locating principles beside

pin/pin/rest would be a first point for future extension of

the system. The management of additional machine

elements or other sizes is convenient by adding them to

the corresponding part catalogue spreadsheets.

Autodesk Inventor basically offers different

mechanics to implement reasoning. One of them is the

iLogic scripting language that is meant to code design

rules. Such a rule-based representation is, in comparison

the the illustrated constraint-based approach, requires

more code and usually leads to a less flexible programm

flow as could be realized by the constraint queueing.

Additionally, the maintainability of rule-based

approaches suffers as in the case of a modification of the

rule-base each rule needs to be checked for consistency.

The restriction the the onboard ressources of the

CAD system has also disadvantages: As mentioned

before, the code is less economic as VBA does not allow

to create variables (and user interface elements) at

runtime. The choice of advanced programming

environments that attach to the CAD system and remote

control its functions would be favorable. A possible

avenue here is the use of the phyton scripting language.

The example of the locating fixture is a good

placeholder for many configuration problems as it uses

equalities, inequalities and math constraints to get to a

solution. This is transferable for many other configurable

CAD assemblies. The design knowledge in this

particular case was already formalized to a large extend

and easy obtainable. As CAFD is an early working field

for KBE systems, the abstraction of the design problem

to a configuration problem was easy using the restriction

that the locating principle was fixed. If the system should

be able to abstract the locating principle by itself,

different geometric data is necessary is to be included

into the analyzis, not only the diameters and height

positions. A piece of data is e.g. the orientation of

drillings. In the example of the case study these are all

parallel to each other, which is not necessarily the case.

Another avenue for future work in this field is the

coupling of different solutionstrategies and reasoning

mechanisms to more complex solvers. E.g. for

performance optimizations and the application for large

solution spaces, the integration of shortcuts and e.g. case-

based reasoning is promising. Another question is to

integrate the CAD model e.g. by reobtaining geometric

data as further input to the CSP after the initial

configuration has been proposed. Modeling guidelines

and best practices for such applications could promote

the application of KBE techniques in general.

7. REFERENCES

[1] I. Boyle, Y. Rong, and D.C. Brown, “A review and

analysis of current computer-aided fixture design

approaches,” Robotics and Computer-Integrated

Manufacturing, vol. 27, no. 1, pp. 1-12, 2011. DOI:

10.1016/j.rcim.2010.05.008

[2] R.H. Alarcón, J. Ríos Chueco, J.M. Pérez García and

A.Vizán Idoipe, “Fixture knowledge model

development and implementation based on a

functional design approach”, Robotics and Computer-

Integrated Manufacturing, vol. 26, no. 1, pp. 56-66,

2010. DOI: 10.1016/j.rcim.2009.02.001

[3] Y. Rong, and Y. Zhu, Computer-Aided Fixture

Design, Taylor&Francis: Milton Park, 1999.

[4] G. La Rocca, “Knowledge based engineering:

Between AI and CAD. Review of a language based

technology to support engineering design” Advanced

Engineering Informatics, vol. 26, no. 2, pp. 159-179,

2012. DOI: 10.1016/j.aei.2012.02.002

[5] W.J.C. Verhagen, P. Bermell-Garcia, R.E.C. van

Dijk, and R. Curran, “A critical review of

Knowledge-Based Engineering: An identification of

research challenges,” Advanced Engineering

Informatics, vol. 26, no. 1, pp. 5-15, 2012. DOI:

10.1016/j.aei.2011.06.004

43

[6] N.R. Milton, Knowledge Technologies, Monza, Italy:

Polimetrica sas, 2008.

[7] P. Blazek, C. Streichsbier, C., and M. Partl,

Configurator Database Report 2016. Morrisville,

USA: lulu.com, 2017.

[8] U. Blumöhr, M. Münch and M. Ukalovic, Variant

configuration with SAP. Galileo Press, Bonn, 2012.

[9] J. McDermott, “R1: A rule-based configurer of

computer systems,” Artificial intelligence, vol. 19,

no. 1, pp. 39-88, 1982. DOI: 10.1016/0004-

3702(82)90021-2

[10] C.B. Chapman, and M. Pinfold, “The application of

a knowledge based engineering approach to the rapid

design and analysis of an automotive structure,”

Advances in Engineering Software, vol. 32, no. 12,

pp. 903-912, 2001.

[11] P.C. Gembarski, “Three ways of integrating

computer-aided design and knowledge-based

engineering”, Proceedings of the Design Society:

DESIGN Conference, vol. 1, pp. 1255-1264,

Cambridge University Press: Cambridge, 2020. DOI:

10.1017/dsd.2020.313

[12] C.J. Petrie, Automated Configuration Problem

Solving, 1st ed.; Springer: Berlin/ Heidelberg, 2012.

[13] V. Kumar, “Algorithms for constraint-satisfaction

problems: A survey”, AI Magazine, vol. 13, no.1, pp.

32-32, 1992. DOI: 10.1609/aimag.v13i1.976

[14] R. Barták, M.A. Salido and F. Rossi, “Constraint

satisfaction techniques in planning and scheduling”,

Journal of Intelligent Manufacturing, vol. 21, no.1,

pp. 5-15, 2010. DOI: 10.1007/s10845-008-0203-4

[15] P.C. Gembarski and R. Lachmayer, “Solution space

development: conceptual reflections and development

of the parameter space matrix as planning tool for

geometry-based solution spaces”, International

Journal of Industrial Engineering and Management,

vol. 9, no. 4, pp. 177-186, 2018. DOI:

10.24867/IJIEM-2018-4-177

[16] M. Hirz, W. Dietrich, A. Gfrerrer, and J. Lang,

Integrated Computer-Aided Design in Automotive

Development, 1st ed.; Springer: Berlin/ Heidelberg,

2013.

[17] W. Skarka, “Application of MOKA methodology in

generative model creation using CATIA”.

Engineering Applications of Artificial Intelligence,

vol. 20, no. 5, pp. 677–690, 2007. DOI:

10.1016/j.engappai.2006.11.019

[18] A. Chakrabarti, K. Shea, R. Stone, J. Cagan, M.

Campbell, N.V. Hernandez and K.L. Wood,

“Computer-based design synthesis research: an

overview”, Journal of Computing and Information

Science in Engineering, vol. 11, no. 2, pp. 1 – 10,

2011. DOI: 10.1115/1.3593409

[19] T. Brockmöller, R. Siqueira, P.C. Gembarski, I.

Mozgova and R. Lachmayer, “Computer-Aided

Engineering Environment for Designing Tailored

Forming Components”, Metals, vol. 10, no. 12, pp.

1589-1611, 2020. DOI: 10.3390/met10121589

[20] D. Sabin and R. Weigel “Product configuration

frameworks - a survey”, IEEE intelligent systems,

vol. 13, no. 4, pp. 42-49, 1998. DOI:

10.1109/5254.708432

[21] L. Hvam, N.H. Mortensen and J. Riis, Product

Curtomization, Springer, Berlin, Heidelberg, 2008.

[22] A.A. Hopgood, Intelligent Systems for Engineers

and Scientists: A Practical Guide to Artificial

Intelligence. CRC press, Boca Raton, 2021.

[23] B. Chandrasekaran, “Design problem solving: A

task analysis”, AI magazine, vol. 11, no. 4, pp. 59-71,

1990. DOI: 10.1609/aimag.v11i4.857

[24] S. Marcus and J. McDermott, “SALT: A knowledge

acquisition language for propose-and-revise

systems”, Artificial Intelligence, vol. 39, no. 1, pp. 1-

37, 1998. DOI: 10.1016/0004-3702(89)90002-7

[25] P. Pitiot, M. Aldanondo, and E. Vareilles,

“Concurrent product configuration and process

planning: Some optimization experimental results”,

Computers in Industry, vol. 65, no.4, pp. 610-621,

2014. DOI: 10.1016/j.compind.2014.01.012

[26] P.C. Gembarski and R. Lachmayer, “Mass

customization und product-service-systems:

Vergleich der Unternehmenstypen und der

Entwicklungsumgebungen”, Smart Service

Engineering, pp. 214-232, Springer Gabler,

Wiesbaden, 2017. DOI: 10.1007/978-3-658-16262-

7_10

[27] D. Kloock-Schreiber, L. Domarkas, P.C.

Gembarski, and R. Lachmayer, “Enrichment of

geometric CAD models for service con-figuration”,

Proceedings of the 21st International Configuration

Workshop, Hamburg, Germany, 21.09.2019, pp. 22-

29. DOI: 10.15488/92

CORRESPONDENCE

Dr.-Ing. Paul Christoph Gembarski

Institute of Product Development,

Leibniz Universität Hannover,

An der Universität 1

30823 Garbsen, Germany

gembarski@ipeg.uni-hannover.de

44

mailto:gembarski@ipeg.uni-hannover.de

