
Abstract: Mass customization requires flexible 
manufacturing systems like Reconfigurable 
Manufacturing Systems (RMS) to offer low-cost and 
high-volume production. An operational challenge is to 
manage the reconfiguration for the trade-off between the 
benefits of diversity in manufacturing and the difficulty 
of complexity in planning. This paper formulates a bi-
objective mixed-integer non-linear programming 
mathematical model to integrate optimization of process 
planning and flexible job-shop scheduling for producing 
multi-unit mass-customized products in an RMS. The 
objectives are to minimize the total penalty for tardiness 
and the total cost, including reconfiguration, setup, 
processing, work-in-process transportation, and holding 
costs. The Archived Multiobjective Simulated Annealing 
(AMOSA) and Non-Dominated Sorting Genetic 
Algorithm II (NSGA-II), combined with some constraint 
handling techniques, are applied to solve the formulated 
problem. A small instance is solved with an exhaustive 
search to validate the mathematical model and the 
programming of these two approximate solution 
approaches. Both approximate solution approaches 
could obtain some exact Pareto-optimal solutions in a
shorter computation time. Three larger instances are 
solved. Results show that the proposed constraint 
handling technique to repair the start time of operation 
helps yield better approximate Pareto-optimal solutions 
that have smaller objective values. Additionally, NSGA-
II is advantageous over AMOSA in dealing with this 
problem.
Key Words: reconfigurable manufacturing system; 
mass-customized products; process planning; flexible 
job-shop scheduling

1. INTRODUCTION
Several companies are considering Mass 

Customization (MC) as a new production strategy to 
improve overhead, price, profit, and company success 
(Shao, 2020). Even though it is a common understanding 
that we need MC, there is still a long way ahead to define 
how to implement it successfully. Many companies, like 
miaddidas, could not achieve the expected success. This 
is due to the challenges facing the operational 

implementation of MC. Eventhough the enablers are well 
identified, how to implement them is yet not quite clear. 
One main enabler of MC is flexible and agile 
manufacturing systems (Jain et al, 2021) such as  
Reconfigurable Manufacturing Systems (RMS). RMS is 
designed at the outset for a rapid shift in structure and 
hardware and software components to quickly adjust 
production capacity and functionality within a part 
family in response to sudden changes in the market or 
regulatory requirements (Koren et al., 2019). RMSs can 
potentially advance MC significantly (Andersen et al., 
2018). However, managing high demand uncertainty 
while maintaining low costs and fast delivery poses a 
challenge. In response, production planning, including 
scheduling and process planning, must evolve to handle 
increased product variety and competition (Phanden et 
al., 2013). To successfully implement MC, the overall 
manufacturing costs need to be reduced while satisfying 
customer requirements. This can be achieved by 
integrating process planning and scheduling in RMS. 
This paper contributes to the MC implementation 
research by proposing an integration of process planning 
and scheduling to produce mass-customized products 
most efficiently in an RMS.  

This study built a bi-objective mixed-integer 
mathematical model to solve the integrated optimization 
of process planning and scheduling within a short 
planning horizon to minimize the total tardiness penalty 
and the total manufacturing cost, including machine 
reconfiguration, setup, processing, and Work-In-Process 
(WIP) handling costs. The Archived Multiobjective 
Simulated Annealing (AMOSA) algorithm and the Non-
dominated Sorting Genetic Algorithm II (NSGA-II) 
algorithm are adopted and combined with the problem-
specific constraint-handling techniques to solve the 
mathematical model. Numerical experiments analyze the 
performance of these two solution approaches. 

The rest of this paper is structured as follows. The 
first section  discusses a literature review. The second 
section introduces the mathematical model, two 
approximate solution approaches NSGA-II and AMOSA, 
and constraint handling techniques. The third section, 
discusses the performance of adapted NSGA-II and 
AMOSA. Finally, the last section summarizes the 
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contribution of this work and gives some perspectives for 
future studies.

2. LITERATURE REVIEW 

This paper focuses on mathematical programming for 
RMS process planning and scheduling to produce 
multiple multi-unit mass-customized products. Table 1 
summarizes the reviewed literature's problems, 
objectives, models, and solution approaches addressing 
process planning and scheduling optimization in RMS. 
These are 48 articles searched by the keywords 
“Reconfigurable manufacturing system” AND “Process 
planning” and “Reconfigurable manufacturing system” 
AND “Scheduling” in four scientific academic literature 
databases (ScienceDirect, SpringerLink, Taylor and 
Francis Online, IEEE Xplore). 

As shown in Table 1, only two studies integrated 
process planning and scheduling. Chaube et al. (2012) 
(Paper 47) did not consider the transportation cost, yet it 
highly impacts scheduling and process planning 
decisions. Also, it only considers a single product.
Bensmaine et al. (2014) (paper 48) proved the higher 
performance of an integrated approach over a sequential 
one. However, they did not consider costs; they only 
optimized time-related performance. Whereas cost is an 
important criterion in decision-making. This paper 
overcomes these gaps by focusing on multi-products, 
including all costs, and also considering time as the 
objective function. 

As shown in Table 1, some studies built Mixed-
Integer Linear/Non-Linear programming (MILP/MINLP) 
mathematical models to determine the start time of each 
operation. The start time is a continuous decision 
variable. Integer decision variables seem inevitable when 
formulating the mathematical model for process planning 
and scheduling optimization in RMS owing to the 
countability of machines and configurations to be 
selected. Based on the above, this study built a mixed-
integer programming mathematical model to integrate 
process planning and scheduling optimization in RMS 
for multi-unit mass-customized products. 

Genetic algorithm (GA) based algorithms are the 
most popular approximate solution approaches, followed 
by simulated annealing (SA) to the process planning and 
scheduling problems in RMS. These two algorithms are 
often adapted to be problem-specific or combined with 
the Technique for Order Performance by Similarity to 
Ideal Solution (TOPSIS) to improve their performance in 
solving the formulated mathematical models. They are 
employed alongside other algorithms, such as the 
Strength Pareto Evolutionary Algorithm (SPEA-II) and 
Multiobjective Particle Swarm Optimization (MOPSO) 
to compare their performance.

A few studies used commercial optimizers or 
exhaustive search to obtain exact optimal solutions to 
small-scale problems. This is a good way to validate 
mathematical models and check whether constraints are 
complete or conflicting. Despite that, it is necessary to 
develop approximate solution approaches because the 
computation of exact solution approaches would be time-
consuming to obtain exact optimal solutions in real 
production scenarios, especially for large-scale problems 
with many parts and operations to be processed. Given 

the above, this study decided to use the exhaustive search 
to solve small instances. It also adapted NSGA-II and 
AMOSA as practical solution approaches for large 
instances. The exhaustive search is also used to validate 
the NSGAII and AMOSA approaches.

The Legend for table 1 is as follows: O.P.: 
Optimization Problem; P. Or PP.: Process Planning; SC.: 
Scheduling; Ob.: Objectives; C.: Cost; T.: Time; Sol.: 
Solution; Ex.: Exact; G.: GAMS ; CX:CPLEX; ES.: 
Exhaustive Search; L.: LINGO; GU: Gurobi; App.: 
Approximative; Alg.: Algorithm; Ad.: Adapted.

Table 1. Summary of articles addressing process 
planning and scheduling optimization in RMS

O.P. Ob. Sol. approaches
P S C T Ex. App.

1 √ √ NLP GA & tabu search
2 √ √ ILP GA
3 √ √ 0-1 NLP GA
4 √ √ NLP SA-based approach
5 √ √ NLP SA-based approach
6 √ Others 0-1 LP NSGA-II
7 √ √ 0-1 NLP NSGA-II & TOPSIS
8 √ √ 0-1 NLP NSGA-II & TOPSIS
9 √ √ ILP G
10 √ √ ILP G
11 √ Others ILP NSGA-II
12 √ √ √ NLP NSGA-II
13 √ √ 0-1 NLP NSGA-II & TOPSIS
14 √ √ √ ILP NSGA-II & AMOSA

15 √ √ √ ILP Three hybrid 
heuristics

16 √ √ √ 0-1 NLP NSGA-II & TOPSIS
17 √ √ √ 0-1 NLP NSGA-II & NSGA-III
18 √ √ √ NLP NSGA-II & AMOSA
19 √ √ √ 0-1 LP NSGA-II & SPEA-II
20 √ √ √ 0-1 NLP AMOSA & TOPSIS
21 √ Others 0-1 NLP ES
22 √ √ MINLP NSGA-II & MOPSO
23 √ √ √ MILP NSGA-II & AMOSA
24 √ √ 0-1 NLP GA
25 √ √ 0-1 NLP CX GA
26 √ √ ILP G Lagrangian relaxation
27 √ Others ILP CX
28 √ √ √ NLP NSGA-II &MOPSO
29 √ √ √ NLP Shannon Entropy
30 √ √ √ NLP NSGA-II & MOPSO
31 √ √ MILP Immune alg.
32 √ √ √ MINLP original heuristic
33 √ √ √ 0-1 NLP L NSGA-II
34 √ √ √ MILP NSGA-II &MOPSO
35 √ √ 0-1 NLP Advantage actor-critic
36 √ √ MINLP GA-based alg.
37 √ Others ILP original alg.
38 √ √ MILP CX
39 √ √ NLP priority rule method
40 √ √ LP Social network
41 √ √ MILP CX
42 √ √ MILP Equilibrium optimizer
43 √ √ MILP original alg.
44 √ √ MILP GA & a local search
45 √ √ 0-1 LP GU
46 √ √ MILP L improved GA
47 √ √ √ √ NLP Ad. NSGA-II
48 √ √ √ NLP original heuristic
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3. PROBLEM FORMULATION AND SOLUTION 
APPROACHES

This paper presents a deterministic model for mass-
customized production, considering the components and 
parts required for each product. Each product consists of 
multiple part variants, with each part variant following 
an operation precedence graph. Jobs involve producing 
part variants, including machine setup, reconfiguration, 
and WIP handling. Jobs are identified by a triplet 
Identifier (ID), distinguishing between products, part 
variants, and their order within the part family. These 
jobs are executed in a Reconfigurable Manufacturing 
System (RMS) with multiple machines and 
configurations. The study focuses on flexible job-shop 
scheduling, where operations can be performed by 
feasible machine and configuration pairs. WIPs are 
generated after the first operation and transported 
between machines, with occasional holding until the 
machine is available. The study formulates an operations 
research problem for mass customization in RMS, 
providing input parameters like due dates and part 
information for production planning. The output includes 
optimal operation sequences, machine configurations, 
and start times for each job, integrating process planning 
and flexible job-shop scheduling.

3.1. Mathematical model

The following assumptions help simplify the 
mathematical model: 

1. All parts and products are qualified. 
2. Raw materials and material handling equipment 

are always available. 
3. Preemptions and breakdowns aren't considered.
4. Layout reconfiguration is not considered in this 

study. Which is true for most RMSs today. 
5. In the beginning, all machines are idle. 

Indices:
, Indices of mass-customized products
, Indices of part variants
, Indices of the third number of jobs’ IDs

,
The ordinal position indices of operations in 
jobs' operation sequences

,
The ordinal position indices of operations in 
sequences of operations performed on machines

, Indices of operations
, Indices of machines

, Indices of configurations

Parameters:
Set of products
Due date of product 
A scalar for measuring the penalty of 
product ’s tardiness per time unit 
Set of operations
=1 if operation e is feasible on machine 
m with configuration g. 
= 0 if not
Set of part variants
Time of transporting a WIP 

corresponding to part variant v per 
distance unit
Cost of transporting a WIP 
corresponding to part variant v per 
distance unit
Cost of holding a WIP corresponding 
to part variant 

g
per time unit

Set of operations to process a part 
variant v

Set of operations precedent to operation 
e in a job of part variant v
Time of performing operation e for part 
variant v on machine m with 
configuration g
Cost of performing operation e for part 
variant v on machine m with 
configuration g
Setup time to perform operation e for 
part variant v on machine m with 
configuration g
Setup cost to perform operation e for part 
variant v on machine m with 
configuration g
Number of parts belonging to part 
variant v in product i
Set of machines
Distance between machine m and machine 
m’
Set of configurations on machine m
Initial configuration on machine m
Machine reconfiguration time from 
configuration g to configuration g’ on
machine m

RCm,g,g’

Machine reconfiguration cost from 
configuration g to configuration g’ on
machine m

Decision variables:
Independent decision variables

ρi,v,j,q
Operation at the th position in the operation 
sequence of Jobi,v,j

αi,v,j,q Machine to perform operation ρi,v,j,q
Configuration on machine αi,v,j,q, and to 
perform operation ρi,v,j,q

Start time to perform operation ρi,v,j,q

Auxiliary decision variables:
Completion time of operation ρi,v,j,q

Tardiness of product i
Start time set for operations from the th

ordinal position on machine m
Product index of the th operation performed 
on machine m
Part variant index of the th operation 
performed on machine m
Job index of the th operation performed on 
machine m
Ordinal position index of the th operation 
performed on machine in the operation 
sequence of 
Operation of the th performed on machine m
Start time to perform operation 
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Configuration to perform operation 

The first objective of this mathematical model is to 
minimize the total penalty cost for mass-customized 
products that are not completed on time. The 
corresponding penalty cost coefficient weights the 
tardiness time of each delayed product. Compared with 
minimizing the total tardiness time of all the delayed 
mass-customized products, this objective function 
considers customers’ distinct tolerance for tardiness.

The tardiness of each mass-customized product is 
given in equation (2). 

The completion time of each operation in the above 
equation is defined by equation (3).

The second objective is to minimize the sum of the 
total machine reconfiguration cost (MRC), the total setup 
cost in preparation for performing all operations (PSC), 
the total cost of performing all operations (PPC), the 
total WIP transportation cost (WFC), and the total WIP 
holding cost (WHC) for a given MC task. 

The machine reconfiguration occurs when two 
consecutive operations are performed on one machine 
with different configurations. If two consecutive 
operations are performed on one machine with the same 
configuration, the values of the reconfiguration time and 
reconfiguration cost are equal to 0.

The setup occurs when two consecutive operations 
performed on one machine are different or they are 
performed for two different part variants. Even if these 
two consecutive operations and the corresponding two 
part variants are identical, there is a setup when different 
configurations perform them. In this situation, machine 
reconfiguration and setup still co-exist. The parameters 
of their time and cost are not to be confused because the 
time and cost of machine reconfiguration incurred by 
changes in the hardware structure are determined by the 
configurations before and after the change. Meanwhile,
the time and cost of setup incurred by adjusting machine 
processing functionality through the software are 
determined by the operation to be performed and its 
corresponding part type. There is always a setup for the 
first operation on each machine.

The total machine reconfiguration cost (MRC) and 
the total setup cost (PSC) depend on the sequences of 
operations being performed on machines, the 
configurations selected to perform those operations, and 
the part variants. Auxiliary decision variables ρm,l, vm,l
and φm,l in equations (5) and (6) above, along with the 
other auxiliary decision variables im,l, jm,l, qm,l and βm,l,
are defined by the following formulas:

Formula (7) gives the set of all operations performed 
on each machine. Equations in (8) find indices of the first 
operation performed on each machine and identify the 
selected configuration and the start time to perform this 
operation. Formula (9) and equations in (10) repeat the 
same idea as formula (7) and equations in (8) to identify 
every operation in the order in which they are performed 
on machines. 

According to equation (11), the total cost of 
performing all operations is determined by the selected 
machine and configuration pairs to perform operations, 
which, intuitively, are merely relevant to the decision-
making in process planning. The selection of machine 
and configuration pair to perform each operation will be 
affected by the decision-making in flexible job-shop 
scheduling because of the availability of machines in 
RMS. It will also be affected by distances between 
machines in RMS as there are tradeoffs between machine 
reconfiguration and WIP transportation for performing 
some operations. Hence, the total cost of performing all 
operations is relevant to decision-making in both process 
planning and flexible job-shop scheduling.

In this study, both cost and time spent on transporting 
a WIP are directly proportional to the distance of that 
transportation, which is equal to the distance between 
two machines performing two consecutive operations 
before and after that WIP transportation. Besides, the 
cost and time for transporting WIPs corresponding to 
different part variants over per distance unit are 
presumably not the same.
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Except for WIP transportation, the time remaining 
between two consecutive operations in a job is 
considered a WIP holding time. The values of the cost 
parameter for holding WIPs corresponding to different 
part variants also vary.

The decision variables are subject to the following 
constraints:

Constraint (14) indicates that the selected machine 
and configuration pairs can perform the corresponding 
operations. Constraint (15) ensures that the start time to 
perform an operation cannot be earlier than the sum of 
the previous operation’s completion time and the WIP 
transportation time between these two consecutive 
operations in the corresponding job’s operation 
sequence. Constraint (16) guarantees that an operation 
cannot be earlier than the completion of those operations 
that are precedent to this operation in the corresponding 
operation precedence graph. Constraint (17) states that 
the first operation on each machine cannot start until the 
machine reconfiguration and the setup in preparation for 
performing this operation have been finished. According 
to constraint (18), if two consecutive operations are the 
same and are performed on the same machine with the 
same configuration for the same part variant, the start 
time of the latter operation cannot be earlier than the 
completion time of the previous operation. If not, 
constraint (19) restricts the subsequent operation from 
starting until the previous operation has been completed 

and the machine reconfiguration and setup in preparation 
for performing the subsequent operation have been 
finished. Constraints (20-23) point out that the values of 
the independent decision variables are within the feasible 
domain of definition.

3.2. Solution approaches

The mathematical model above is multiobjective, and 
there is no single best solution for all objectives. For this, 
the non-dominated concept is employed to find Pareto-
optimal solutions. NSGA-II is an evolutionary algorithm 
widely used in the literature to tackle many optimization 
problems. This study adopted NSGA-II with AMOSA to 
solve the formulated NP-hard problem since local search 
methods like SA would need large computation time to 
find optimum solutions for large instances (Zhang et al., 
2019). The formulated problem is NP-hard because it 
engages flexible job-shop scheduling, which has been 
proved NP-hard. 

In the program of NSGA-II and AMOSA algorithm, 
four multi-dimensional lists are created to place the 
values of independent decision variables ρi,v,j,q, αi,v,j,q,
φi,v,j,q and βi,v,j,q in elements. The numeric data types of 
elements in three multi-dimensional lists encoding ρi,v,j,q,
αi,v,j,q, and φi,v,j,q are integers. The numeric type of 
elements in the multi-dimensional list encoding βi,v,j,q is 
floating point. 

A solution to the formulated process planning and 
flexible job-shop scheduling integrated optimization 
problem is represented as an object with the above four 
multi-dimensional lists as its properties. 

In the NSGA-II program, a class is defined to create 
objects representing a population of solutions, called 
individuals. The initial population evolves by repeatedly 
applying the selection, crossover, and mutation operators 
in generations. As shown in Fig. 1, this study applied the 
uniform crossover on the selected “parent” individuals to 
generate new “offspring” individuals. For the integer 
independent decision variables ρi,v,j,q, αi,v,j,q, and φi,v,j,q,
the integer division (denoted by the symbol ‘//’ in Fig. 1) 
is adopted to obtain integer values. The mutation
operator is shown in Fig. 2. 

Fig. 1. The uniform crossover operator of NSGA-II

In the AMOSA program, the initial solution is 
improved by stochastic perturbations in iterations to 
generate new candidate solutions. The perturbation of the 
AMOSA algorithm in this study is the same as the 
mutation operator of NSGA-II shown in Fig. 2.

Some independent decision variables are not subject 
to the constraints in the mathematical model by the 
crossover and mutation operators in NSGA-II and the 
perturbation in AMOSA. Such infeasible solutions 
existing in generations/iterations adversely affect the 
performance of the adopted NSGA-II and AMOSA 
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algorithms for obtaining approximate Pareto-optimal 
solutions. This work checked the feasibility of all 
solutions generated after the crossover and mutation 
operations in NSGA-II and the perturbation operations in 
AMOSA and repaired infeasible ones. As shown in Fig. 
3, four sets of independent decision variables ρi,v,j,q,
αi,v,j,q, φi,v,j,q and βi,v,j,q in each solution are modified 
sequentially. This modifying order is logical and should 
not be disturbed; otherwise, remodifying the values that 
have been checked and repaired will be unavoidable.p

Fig. 2. The mutation operator of NSGA-II in this study

Fig.3. The flowchart of repairing infeasible solution 

Infeasible independent decision variables ρi,v,j,q, αi,v,j,q,
and φi,v,j,q are repaired by randomly picking another value 
from their domains of definition. The repairing 
assignment is repeated until the repaired independent 
decision variable becomes feasible. This repairing 
method is simple and effective for these three set of 
independent decision variables, thanks to the limited 
number of values in their domains of definition.

This study proposed a problem-specific method based 
on a greedy policy to modify all the values of the 
independent decision variables βi,v,j,q in each solution. All 
the modified values are feasible and are expected to drive 
the values of two objective functions to be as small as 
possible. A problem is that values of the independent 
decision variables βi,v,j,q are mutually influential. Any 
modification of the start time of an operation may lead to 
the start time of its subsequent operations not only in the 
same job but also performed on the same machine
becoming infeasible, which creates a chain reaction. The 
difficulty in modifying this set of independent decision 
variables is finding a modifying order in which all the 
values that have been modified will always be feasible 
when the start time of any other operation is modified.

The procedure in the following pseudocode
overcomes this difficulty and applies a greedy policy to 
modify the start time of each operation:

For , , ,
:

If :
Set 

Sort all in ascending order on machines to form the 
auxiliary decision variables , save all auxiliary 
decision variables in set 
While :

Find the minimum value in and save the 
corresponding operation index ( ), the 
corresponding machine index (((((( ) performing 
operation , the corresponding configuration ( )
performing operation , the corresponding ordinal 
position index ( ) of the sequence of operations 
performed on machine , the corresponding 
product index ( ), the corresponding part variant 
index ( ), index ( ) to identify the corresponding 
job, and the corresponding ordinal position index 
( ) in the operation sequence of 
If & :

Set 

If & :
Set 

If & :
If , ,

:
Set 

Else:
Set 
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If & :
If , ,

:
Set 

Else:
Set 

Delete this minimum value from 

4. EXPERIMENTAL RESULTS AND 
ANALYSES

Due to the lack of benchmark instances and the 
opportunity for practical application, the validation of the 
proposed model and the evaluation of the adapted 
NSGA-II and AMOSA with constraint handling 
techniques were done through numerical experiments. 
All data in numerical examples are randomly generated. 
The experiments are conducted on a laptop computer 
powered by an Intel Core i7-12700H CPU (2.30 GHz) 
and 16 GB of RAM. Algorithms are programmed in 
PyCharm. The version used is 2021.1.1. Python 3.8 has 
been configured as a project interpreter.

4.2 Numerical experiments to solve small examples

The mathematical model is validated through tests on 
a small numerical example, ensuring feasibility and 
constraint adherence. Exhaustive search is then 
employed to obtain exact Pareto-optimal solutions for 
this example. To confirm their accuracy, these exact 
solutions are compared with approximate solutions 
generated by adapted NSGA-II and AMOSA algorithms 
with constraint handling techniques. Proper parameter 
settings using Design of Experiments (DOE) are 
employed for both algorithms. With these settings, both 
adapted NSGA-II and AMOSA algorithms successfully 
obtain exact Pareto-optimal solutions in 6 out of 10 runs, 
as detailed in the provided data repository.

4.2 Numerical experiments to solve large examples

Three larger numerical examples are solved to 
compare the performance of two approximate solution 
approaches and test them without the proposed constraint 
handling technique to repair the start time of operations. 
In programs of the adapted NSGA-II and AMOSA 
without the proposed constraint handling technique to 
repair the start time of operations, all the other constraint 
handling techniques to repair infeasible independent 
decision variables ρi,v,j,q, α_i,v,j,q and φi,v,j,q are retained, 

but not the proposed constraint handling technique to 
repair infeasible start time of operations βi,v,j,q. The
infeasible solutions are checked, and their objective 
values are multiplied with a large penalty coefficient so 
that infeasible solutions are probably dominated by other 
solutions in generations/iterations and cannot be retained 
in the final archives in NSGA-II or AMOSA. However, 
individuals in the first generation in NSGA-II and the 
initial two solutions in AMOSA are generated by using 
the proposed constraint handling technique to make sure 
they are feasible. 

Four metrics, Quality Metric (QM) to maximize, 
Mean Ideal Distance (MID) to minimize, Diversification 
Metric (DM) to maximize, and Number of Pareto-
optimal Solutions (NPS) to maximize, defined by 
Nemati-Lafmejani et al. (2019) are adopted in the 
numerical experiments. QM is determined by dividing 
the cardinal of the set of overall non-dominated solutions 
by the cardinal of the original set of Pareto-optimal 
solutions. This study uses all the approximate Pareto-
optimal solutions obtained for the same numerical 
example to calculate this metric. MID measures the 
relative distance of approximate Pareto-optimal 
solutions. DM shows the diversity of approximate 
Pareto-optimal solutions. NPS is the number of the 
approximate Pareto-optimal solutions obtained in each 
run. 

There are four programs for NSGA-II with the 
proposed constraint handling technique to repair the start 
time of operations, AMOSA with the proposed constraint 
handling technique to repair the start time of operations, 
NSGA-II without the proposed constraint handling 
technique to repair the start time of operations, AMOSA 
without the proposed constraint handling technique to 
repair the start time of operations. Each program is run 
three times to solve each numerical example. For each 
numerical example, the parameters in NSGA-II and 
AMOSA with and without the proposed constraint 
handling technique to repair the start time of operations 
are adjusted to keep the average computation time of 
these four programs acceptable. Table 2 summarizes the 
performances of the different approaches. It shows that 
for each numerical example, the approximate Pareto-
optimal solutions obtained by NSGA-II in shorter 
computation time are better than those obtained by 
AMOSA, as the mean objective values of approximate 
Pareto-optimal solutions obtained by NSGA-II are 
smaller than those obtained by AMOSA, no matter with 
or without the proposed constraint handling techniques to 
repair the start time of operations. Therefore, NSGA-II 
outperforms AMOSA in solving the formulated problem, 
although the approximate Pareto-optimal solutions 
obtained by AMOSA are more diverse than those 
obtained by NSGA-II. 

The approximate Pareto-optimal solutions obtained 
by both NSGA-II and AMOSA with the proposed 
constraint handling technique to repair the start time of 
operations are better than those obtained without the 
proposed constraint handling technique. Thus, the 
superiority of the proposed constraint handling technique 
to repair the start time to operations is validated.
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5. CONCLUSION AND FUTURE WORKS
This study contributes to the MC implementation 

research by proposing how production can be planned 
for multiple MC products in an RMS. It proposes an 
integrated optimization of process planning and flexible 
job-shop scheduling within an RMS for producing 
multiple multi-unit mass-customized products. It 
overcomes gaps identified in the literature by considering 
all related costs, time factors, and multi-products. It 
allows determining the optimal operation sequence for 
each part in each product, identifying the best machine 
configuration for each operation, and scheduling the 
operations on machines in the most efficient order and 
time. The research adopts NSGA-II and AMOSA 
algorithms, supplemented with constraint-handling 
techniques, to solve the formulated problem. A notable 
contribution to the literature is the development of an 
effective constraint-handling technique for repairing the 
start time of operations, applicable to various solution 
approaches for scheduling problems. However, a 
significant limitation is the lack of real instances for 
validation, suggesting that future research should focus 
on validating the sustainability of RMS. RMSs not only 
offer customized flexibility but also contribute to 
developing sustainable production systems. Moreover, 
the integration of quality-related performances into 
reconfigurable process plans is highlighted. With the rise 
of Industry 4.0, machine learning approaches are 
identified as promising solutions for various 
manufacturing challenges within RMSs, including 
process planning and scheduling.
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Table 2. Metrics values in the numerical experiment to solve larger examples

Legend: PCHT = the proposed constraint handling technique is used to repair the start time of operations
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