
Abstract: When personalizing products, AI algorithms 
relieve customers of the burden of choice. However, 
configuration recommendations by AI are probabilistic in 
nature. Users need to understand this to make well 
informed decisions. 
We therefore propose a user interaction paradigm for 
recommender and configuration systems which is based 
on Single Pass Bayesian Reasoning and on Suitability 
Probability Tables. Personalizing shoes is used as a use 
case for demonstration. 
This interaction paradigm can be maintained even with 
modified algorithms. Generalizability to other classes of 
algorithms remains to be proven as well as correctness of 
interpretation by users and user acceptance.
Key Words: AI, Bayesian Reasoning, Recommender 
Systems, Human-machine Cooperation

1. INTRODUCTION
The megatrend towards individualization does not 

stop at the market and its products. Mass customization or 
mass personalization provides the customer with a tailor-
made product from mass production (Piller 2006; 
Bauernhansl et al. 2023). Product configurators are used 
for this purpose. With many configurable product features 
and characteristics, manual configuration by customers
involves many decisions. For this reason, recommender 
systems employ user models and data to offer suitable 
product suggestions utilizing algorithms. This process is 
often probabilistic, as not all optimal characteristics can 
be represented deterministically as a function of the 
available user data. The algorithms recommend product 
features that are only likely to be suitable. This is one of 
the reasons why customers, as decision-makers, must be 

involved in the configuration process to a self-determined 
extent. This can range from making a purchase decision 
based on the algorithm's recommendation to completely 
manual configuration. At least, the Stuttgart model for 
personalized product creation follows this radically user-
centric approach. This model (see Figure 1, Hämmerl & 
Dangelmaier 2018), which was developed at the Mass 
Personalization Performance Center (Held et al. 2018), 
has already been described several times and applied to 
various use cases. One use case discussed the integration 
of sustainability aspects into the personalization and 
configuration steps of the model. The model was 
enhanced to reflect the entire product life cycle and
discussed the implications of each phase from a 
sustainability point of view. Furthermore, the applicability 
of the Stuttgart model to circular economy strategies was
shown (Briem et al. 2022). However, the model has not 
yet defined how human-machine cooperation should be 
designed.

We are therefore looking for an algorithm for 
cooperative personalization that is understood by humans 
and can as well be executed by a probabilistic digital 
configurator or recommender.

2. INTERACTION WITH PROBABILISTIC
ASSISTANCE SYSTEMS

Advances in the field of learning systems and artificial 
intelligence (AI) generally raise the question of how 
humans and machines will work together in the future. 
One answer that is currently being discussed for the future 
is: through natural language (Gross et al. 2020). Humans 
talk or chat with machines as they would with people. 
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Fig. 1. Stuttgart Model Mass Personalization

Another answer based on the state of the art is: via a 
graphical user interface (GUI) that behaves through AI
more dynamically and adaptively than before.

Neither modality generates an adequate mental model 
in humans about the probabilistic nature of the 
personalization problem nor of the (AI) algorithms. The 
reason is that talking in probabilities is avoided in natural 
speech. And modern GUIs tend to keep uncomfortable 
things like uncertainty invisible to the user. A natural 
language interaction promotes the mental model of a 
human counterpart. An adaptive GUI gives the impression 
of an unpredictable and arbitrary machine. Both are 
wrong. An appropriate model for many applications and 
in particular for the personalization in the Stuttgart model 
is that of the probabilistic decision assistant. A suitable
mental model for such systems can be characterized as 
follows:

Probabilistic assistance systems are subject to 
uncertainty.
Their results are to be understood as 
recommendations.
The users finally make decisions and bear 
responsibility for them.

For optimal decisions, the system must communicate 
the degree of uncertainty or risk to the human based on the 
data used. This is done by using a probabilistic language.
If the machine indicates a probability of 90%, the users 
understand that they can only be 90% certain. If the 
chances of an alternative being suitable for the user are 
10:3, then this is also associated with a certain degree of 
certainty or uncertainty. The interaction on the part of the 
machine must make clear that it is about probabilities or 
odds ratios and how high these are.

3. REQUIREMENTS FOR A COOPERATIVE 
CONFIGURATOR

The task of a recommender system is to utilize user 
data and user preferences available for a product system 

in order to find the best combination of features of a 
product for the user. In other words, we are looking for the 
product variant that is most likely to suit the user or is most 
likely to predict the purchase decision. We call such 
probabilities Preferabilities or, more understandably for 
users, Suitability Probabilities.

The configuration should be as efficient as possible. 
The algorithm should be suitable for humans and 
machines. It should be understandable and 
comprehensible for humans and be able to be executed by 
machines based on available data. It should take into 
account normative specifications in the sense of functional 
user requirements as well as subjective or collective user 
preferences. It should also provide data-based decision 
support and enable recommendations based on data from 
user profiles and previous user behavior.

4. USE CASE “SHOE”
We pick a simple fictitious yet realistic example to 

illustrate our approach and its application. A start-up 
comes up with the business idea of functionally 
personalized shoes. They want to provide an affordable 
and sustainable product that fits frequent special needs. 
They appreciate the philosophy of barefoot shoes with 
thin soles, keeping foot muscles active and thereby 
healthy. But they also understand a need for thick elastic 
and damping soles for people who have conditions or must
walk on rigid surfaces in urban environments. Besides 
shoes size they provide shoes in different widths to adapt 
also to unusual foot geometries. Furthermore, they 
identified heel spur as well as the Haglund syndrome with
Achilles bursitis as relevant to adapt for special needs. 
Both conditions show a prevalence of 10%. So, they will 
provide shoes with optional spur or haglund reliefs. 
Concerning design and aesthetics they feel that a small 
selection of occasion-related alternatives rather than 
gender specific ones would fit into today`s world.

This is a use case, which represents the class of 
products with independently configurable product 
features with discrete values. Our considerations will be 
applicable to any product from this class. We assume we
have information about the users, in the sense of a user 
profile, which supports product selection. This 
information is somehow vague. So, we know that the 
client sometimes wears shoes of size 41 and sometimes 
42. For some months a user might be plagued by Achilles 
bursitis and purchases shoes with Haglund relief. A few 
months later the condition has disappeared, and she 
returns to shoes without relief, and so on. So, a best guess 
of an automated configuration algorithm based on data 
available from the past can therefore only deliver results 
that are probably optimal. The user needs to understand 
this. In the Stuttgart model she corrects the decision of the 
algorithm and thereby provides data for the update of the 
user profile.

5. SINGLE PASS BAYESIAN REASONING AS AN 
IDEAL ALGORITHM

From the perspective of Bayesianism (Bovens et al. 
2006; Bartelborth 2017) the Single Pass Bayesian 
Reasoning (SPBR) model is a suitable and understandable 
algorithm in this context. Bayesian reasoning uses Bayes’ 
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theorem to calculate the probability of hypotheses based
on evidence. In our case we have hypotheses about which 
product feature or which value of a product feature 
satisfies the client’s needs best. With each piece of 
knowledge or evidence about the client we update our 
belief on the best feature value for the client. We do this 
by determining how much the piece of evidence 
strengthens the probability that a hypothesis is correct in 
relation to its alternative hypotheses. As an initial belief 
we can use e. g. uninformed priors like equal probabilities 
for the hypotheses or the frequency distributions of 
decisions of other clients. Next, we formulate this 
approach mathematically as an algorithm.

A set of collected user data E is to be mapped to values
of a set of configurable product features M in order to 
decide on the most suitable values. We number the 
configurable features by index k. For the sake of clarity, 
we initially assume independent product features that are 
to be adapted to the users. In our case of a shoe purchase, 
these features are shoe size and width, shoe model, with 
or without heel spur or Haglund reliefs, and the 
cushioning properties of the sole. The various 
hypothetically optimal values per product feature are 
designated by the index j. The hypothetically possible 
values of Mk are named Hkj. We denote the relevant Nk
information or data about the person with Eki. The 
probabilities P(Hkj) that Hkj is the best value for the feature
Mk for the user then result according to Bayes' theorem 
(Laplace 1814; Bayes & Price 1763) from Equation 1. 
This is Bayes’ theorem repeatedly applied in in its ratio 
form.

The prerequisite for the validity of the formula from 
an epistemological point of view is that the user data Eik
for all i are not mutually dependent. In addition, it is 
assumed that for each product feature exactly one value
Hkj must be chosen to define a product, i.e. the Hkj are 
mutually exclusive.

The and are called 
likelihoods. Their quotients are called Bayes Factors. The 
Bayes Factor indicates how much the information Eki
about the users strengthens the suitability probability of 
the characteristic Hkj compared to its alternatives. The 
product of all Nk Bayes Factors yields the Suitability 
Probability of the jth value in relation to all other values.

The recommender system will then recommend the 
value with the maximum Suitability Probability:

 
Where do the likelihoods or Bayes factors 

come from? There are several possibilities. The most 
important are

1. Direct and subjective assessment of suitability 
probabilities by customers: This is the case when 
a customer directly states a 3:2 preference for 
shoe model Berlin and shoe model Paris.

2. Parameterized likelihood functions: Such 
functions map, for example, the parameters foot 
length and foot width to shoe size and shoe 
width. These are functional and normative 
requirements that are formulated by the customer 

or are measured against the customer. It is 
possible to formulate deterministic parametric 
requirements by setting the likelihood of a value 
to 1 and of the other values to 0.

3. Likelihoods as frequencies from a database: If 
you know that women prefer the alternative shoe 
designs in a certain ratio, you can use this 
likelihood ratio as Bayes Factor for the feature 
Model. You can also use a customer's shopping 
history as a personalized data source.

The advantage of the Bayesian approach is that it 
handles subjective preferences and parameter-based 
requirements as well as data-based probabilities in the 
same equation. This makes it universally applicable to 
advisory and decision support situations (Dangelmaier et 
al. 2022; Dangelmaier & Hölzle 2023).

6. USER-FRIENDLY LANGUAGE AND 
INTERACTION 

The above formulas describe the ideal algorithm 
exactly. However, it is neither necessary nor desirable for 
users to know them. To make an informed decision, 
however, they do need to know the Suitability 
Probabilities of all of the features. Only then can they 
interpret the proposal of the algorithm correctly and make 
an adequately informed decision. Table 1 gives an 
example of a Suitability Probability Table (SPT). The cut-
out shows 6 configurable product features and 18 potential 
values. If we extend the range of the size feature to 13 
values and the width feature to 7 values, we will have 30 
values which results in 2912 product variants in total for 
our use case. Empty P cells in Table 1 are to be interpreted 
as 0. 128 combinations seem to be more or less suitable
for the user. Two variants "Berlin, size EU 40, width H, 
thin sole, without Haglund heel relief, either with or 
without heel spur relief" are, according to Equation 2, 
recommended to the user and are printed in bold in the 
Table. Let us furthermore assume that the user made the 
decisions highlighted in gray.

Table 1. Example of a probabilistic shoe configuration 
using suitability probabilities P. 

Model Berlin Paris Lhasa Hawaii
P 0.4 0.3 0.2 0.1
Size ...39 40 41 42...
P 0.8 0.2
Width F G H J...
P 0.8 0.2
Sole Thin Elastic
P 0.7 0.3
Haglund
relief

Yes No

P 0.1 0.9
Spur
relief

Yes No

P 0.5 0.5

We see the advantage of the recommender. The 
decision load is reduced from 2912 to 128 variants by
excluding options (P=0). Two equally suitable variants are 
recommended. If the user had followed the suggestion, he 
would only have had to decide whether he wanted heel 
spur relief. Let us now assume the user deviates from the 
suggestion. He opts for the more elegant model Paris. This 
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is justified because he wants to wear it for more formal 
occasions. The algorithm should not intervene in this case. 
In favor of a visually slimmer foot, he chooses shoe width 
G with shoe size 41 instead of H with 40, contrary to the 
recommendation. According to Table 2, this seems 
irrational and implies negative consequences for foot 
health. The algorithm should warn the user, accordingly,
taking in account the background knowledge, that feet 
tend to grow rather than to shrink. On the other hand, a
Hallux operation could, however, justify the deviating 
width selection. The user knows and can decide.

Table 2. Potentially irrational user decisions - marked in 
black

Model Berlin Paris Lhasa Hawaii
P 0.4 0.3 0.2 0.1
Size ...39 40 41 42...
P 0.8 0.2
Width F G H J...
P 0.8 0.2
Sole Thin Elastic
P 0.7 0.3
Haglund
relief

Yes No

P 0.1 0.9
Spur
relief

Yes No

P 0.5 0.5

In case the user finally orders, his decisions will be 
stored in the user database of the company and will in 
future contribute to the recommendations of the 
algorithm. This is a simple version of a learning system 
and of the feedback of user decisions to a learning system 
as shown in Figure 1.

We will now show how a dependent feature like 
Sustainability can be added. The idea is to provide the user 
with feedback how sustainable their choices are. In our 
example the features Model and Sole differ in 
environmental impacts. It is not useful to disclose 
differences in environmental impacts of shoe size or width 
to the user because it is not desirable to encourage them to 
buy unhealthy shoes for the sake of ecology, e. g. by 
saving material due to choosing a smaller size. This 
approach is in accordance with the internationally 
standardized and widely adopted LCA methodology 
which is built around the so-called functional unit. It
makes sure that the function of a product must be fulfilled
when comparing different product variants.

We mark the environmental benefit per value with 
stars. More stars mean a more environmentally friendly 
product. We add the achieved stars and present them in 
the Eco line at the bottom of Table 3. The P value there 
means the proportion of stars relative to the achievable 
maximum. This is a relative performance measure and not 
a probability like before. But the terms Preferability or 
Suitability also cover such characteristics if they fall in the 
range between 0 and 1, and 1 stands for the most desirable 
value, and each star stands for the same environmental
benefit.
We see in Table 3 that the user followed the 
recommendation of the algorithm and selected healthy 
size and width parameters now. The environmental 
benefit is close to the best possible value, meaning low 

impact for the environment compared to other options.
The user was originally nudged to switch to the more 
sustainable Model “Lhasa” with three stars. Finally, he did 
not do so because the Model is too informal for his
purposes. Again, the user knows more and decides.

Table 3. Probabilistic shoe configuration with dependent 
sustainability feature – sustainability marked by stars

Model Berlin Paris Lhasa Hawaii
P 0.4 * 0.3 ** 0.2 *** 0.1 *
Size ...39 40 41 42...
P 0.8 0.2
Width F G H J...
P 0.8 0.2
Sole Thin Elastic
P 0.7 *** 0.3*
Haglund
relief

Yes No

P 0.1 0.9
Spur
relief

Yes No

P 0.5 0.5
Eco *****
P 0.83

7. DISCUSSION
While we presented a simple recommender algorithm, 

assumingly the most elementary one based on Bayesian 
principles, we did not formulate a full design. We just 
gave enough information to describe the human-machine-
interaction with probabilistic recommenders.

Considering probabilistic communication changed the 
interaction paradigm of the Stuttgart Model. While the 
naïve initial idea was to propose an optimal solution in 
Virtual Reality and then let the user adjust the options like 
in a manual configurator, we ended up with a probabilistic
interaction paradigm with Suitability Probability Tables,
which provide a reasonably reduced amount of data in a 
human readable form. Such an interface empowers the 
users and makes them responsible of informed decisions.

This SPBR algorithm fulfills all the requirements set 
out in Chapter 3 by design. It does not only fit the use case 
but all configuration tasks with finitely countable options 
and independent evidence about the customer and 
independent features as well as dependent decision 
criteria. In practice, however, complications such as 
incompatible values or dependent features occur. For 
example, the model Paris may not be manufactured with 
an elastic sole. Or, in the case of complaints due to a heel 
spur, the preferences change considerably for a few 
months. This could be taken into account by a time-
dependent model. For such reasons algorithms in practice 
will deviate from the simple model we formulated above. 

The sustainability example we showed was a 
simplified first approach to this overall complex topic. 
Improving various dimensions of sustainability aspects is 
a complex optimization problem. In the given example we 
assume that a single-point indicator was defined to 
communicate these aspects to the user. The user is nudged 
to select a combination with higher environmental impact. 
Consequently, the responsibility of minimizing these 
impacts is laid upon the user. This burden of being 
responsible for his or her choice regarding the 
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environmental impacts could be kept small, if the 
algorithm ensures that a specified sustainability threshold 
is upheld. In the future, algorithms will have to address
this issue of aligning user preference and sustainability 
optimum.

However, these complications not invalidate the 
probabilistic interaction paradigm we used. It remains 
recommendable from the perspective of informed 
probabilistic decisions as long as the concept can be 
mapped by linear Preferability measures between 0 and 1.
We have shown in the case of dependent performance 
features like the environmental benefit how the 
Preferability paradigm can be maintained.

On the one hand, further work should investigate 
additional use cases and verify the claimed applicability 
of probabilistic interaction for other classes of 
recommender algorithms. On the other hand, it remains to 
be empirically clarified, how users cope with probabilistic 
communication. Our mathematical and normative 
considerations have not yet proven that it is appropriately 
interpreted and accepted by customers.

Therefore, we recommend considering probabilistic 
interaction with SPT in recommender and configuration 
systems. But usability and acceptance studies are needed 
to verify their benefits.
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