
Abstract: Computational design systems offer diverse 
opportunities for capturing and reusing engineering 
knowledge and design intent. Two approaches are 
knowledge-based computer-aided design (CAD) and 
algorithmic modeling. While the first uses mathematical 
and logical constraints, design rules, and reasoning to
control the parameters of a CAD model, the latter 
abstracts the modeling process of the geometry itself.
This paper explores the combination of both approaches 
and how their strengths contribute to efficient modeling
of geometric solution spaces. This is investigated on the 
example of a generator for enclosures of printed circuit 
boards. The generator was implemented as a remote 
control for the CAD system Autodesk Inventor in C#.
Key Words: Design Automation, Knowledge-Based 
Engineering, Algorithmic Design, Computer-Aided
Design, Solution Space Modeling

1. INTRODUCTION
Today’s computational design systems offer plenty of 

possibilities to capture and reuse knowledge and design 
intent. Design automation does not only reduce the error 
rate and the time required for modeling tasks but it can 
also be scaled to optimize downstream development 
processes (Kuegler et al., 2023; Verhagen et al., 2012).
Parametric and chronology-based computer-aided design 
(CAD) systems offer different techniques build 
geometric solution space models and so to automate 
especially variant design activities. These reach from 
mathematical and logical constraints, design rules, and 
reasoning up to knowledge-based CAD configuration 
(Poot et al., 2020; Gembarski 2018; Amadori et al., 
2012). In contrast, algorithmic modeling emphasizes 
abstracting and modeling the modeling process itself, not 
just using simple sequential macros, but creating 
intelligent interactive model generators. (Fuchs et al., 
2022; Müller et al., 2021; Tedeschi & Lombardi, 2018).

Knowledge-based CAD has advantages such as 
consistent subsequent geometry adaptation and including 
additional information to the parameters like tolerance 
data. Disadvantageous is the necessity of an initial 
geometric model with defined addressable parameters

and references which may lead to an inefficient model 
setup. In contrast, the algorithmic modeling approach 
doesn’t require a master model and is thus favourable for 
complex geometries (Gadeyne et al., 2014; Chakrabarti 
et al., 2011).

The question arises how a complementary application 
of both approaches could lead to a more efficient 
modeling and better performance of geometric solution 
space models. This paper explores the combination of 
knowledge-based CAD and algorithmic modeling in 
printed circuit board (PCB) enclosure design. The 
generator was implemented as a remote control for the 
CAD system Autodesk Inventor in C#. The scientific and 
practical contribution is an application case to illustrate 
the applicability of algorithmic modeling in parametric, 
chronology-based CAD systems to exploit the 
advantages of both technologies.

2. THEORETICAL BACKGROUND
The concepts of knowledge-based engineering (KBE) 

and design automation involve a paradigm shift in 
computer-aided product modeling. Instead of designing a 
single product variant, the goal is to develop a solution 
space, from which a variant can easily be derived based 
on requirements. This includes two perspectives, first 
how to model the solution space and second how to 
explore it (Gembarski, 2020; Zhang, 2014; Skarka 2007).

2.1. Knowledge-Based CAD

Knowledge-based CAD is a 3D modeling principle 
which adds reasoning capabilities to a geometric model 
that enables it to draw conclusions from the design 
context (Ortner-Pichler & Landschützer, 2022; Hirz et 
al., 2013). It is grounded on parametric and feature-based 
design (Fig. 1). The first means to differentiate between 
shape and its describing parameters, the latter describes 
semantic objects that represent geometric building blocks 
enhanced with behaviour (VDI2209:2009).

Today's CAD systems offer different options for 
creating knowledge-based product models. Defining 
logical and mathematical relations between parameters 
allows to differentiate between leading and driven 
parameters. As a consequence, the designer additionally 
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has to plan the configuration concept and 
parameterization of the component (Aranburu et al., 
2022; Camba et al., 2016).

Fig. 1. Overview of the principles of 3D modeling
(VDI2209:2009)

Supporting this, users can define additional 
parameters for length or angular dimensions and for, e.g., 
forces or moments of inertia. This incorporates
integrating extensive mathematical formulas into the 
CAD model, e.g. for dimensioning or proof calculation,
streamlining user workflow (Raffaeli & Germani, 2010).

Additionally, many CAD systems allow the 
definition of design rules as if-then-else statements. 
These rules link e.g. the suppression state of features or 
components to parameters (Grković et al., 2020; 
Gembarski, 2018; Myung & Han, 2001).  

A well-structured model setup with parameters at 
various hierarchy levels is imperative as components 
become more complex. For this, CAD models can relate 
to skeletons that define the positioning of components
and features and their geometrical characteristics (Li et 
al. 2018; Demoly & Roth, 2017).

The control of parameters can be further externalized 
by using spreadsheets, providing additional mathematical 
and statistical capabilities beyond the CAD system. E.g., 
by integrating lookup tables, it becomes possible to 
efficiently select standard parts based on geometric or 
load information and integrate basic reasoning (Peng &
Ridgway, 1993). Another way to integrate reasoning in 
CAD systems is through script languages and macros or 
external knowledge-based systems to determine 
parameters (Gembarski, 2018; Hirz et al., 2013). In such 
a way, it is also possible to include non-geometric 
components such as service features of a product-service 
system (Guillon et al., 2022; Kloock-Schreiber et al., 
2020; Elgammal et al., 2017). 

2.2. Algorithmic Modeling

In algorithmic modeling, the focus is on automating 
the design process rather than pre-formulated solutions.
Therefore, a design problem needs to be formalized in a
way that algorithms can get from an initial situation, e.g. 
the statement of requirements, to generating a geometric 
model (Zuo et al., 2023; Müller et al., 2021; Chakrabarti 

et al., 2011). Algorithms are used to extract product 
properties from requirements, build product design rules
also taking into account external data or numerical 
simulations, and alter the geometry in a rule-based 
manner (Caetano et al., 2020; Zboinska, 2015).

There are multiple ways to create an algorithm-based 
product model. One method is to use an application 
programming interface (API), design language or expert 
system shell to drive a CAD kernel (Gembarski, 2022;
Frank et al., 2014; Ma et al., 2012). Another method is 
the generation of polygonal or NURBS-based geometric 
models (Zboinska, 2015). An example is the 
Grasshopper add-on for Rhinoceros (Oxman, 2017). 
Additional application of algorithms for evaluation and 
optimization of the geometry during generation is 
possible (Boretti et al., 2023; Cubukcuoglu et al., 2019;
Holzer, 2016).

Algorithmic modeling aims to generate an individual 
product for each set of customer requirements. This is 
particularly favorable for complex geometries and pure 
configuration designs but largely restricts subsequent 
parametric editing of the variant. Instead, requirements 
and design rules need to be altered to create the updated 
version (Biedermann & Meboldt, 2020; Queiroz et al., 
2015).

3. RESEARCH OBJECTIVES AND METHODS
The body of literature concerning KBE is 

widespread. Nonetheless, there are only few case studies 
that report in detail about knowledge bases, the 
implementation in CAD, and the transfer from the case 
under consideration to other ones (Kuegler et al., 2023; 
Plappert et al., 2020; Verhagen et al., 2012). By nature, 
parameter planning of knowledge-based CAD models 
concentrates on defining and constraining parameters in 
the sense of single variable domains. Since many feature 
definitions contain multiple parameters for dimensions, 
references, and orientations, designers often use multiple 
instances of them. If, e.g., a cut-out feature is situated 
once on the left and once on the right side depending on 
the variant, the necessary feature is activated by a 
topological parameter that controls the suppression state 
of the feature. 

The question arises if a better performance can be 
achieved when features with such higher-order degrees 
of freedom, i.e., compound parameters and references,
are algorithmically modeled. Studies about such a joint 
application of knowledge-based CAD and algorithmic 
modeling are scarce. To explore this, we follow design 
science research (Peffers et al., 2007; Hevner, 2007). As 
a case study we chose a generator for PCB enclosures as 
this combines a parametric design – the actual cuboid 
enclosure with both halves and the connecting screws –
and an algorithmic part that generates an arbitrary 
number of cut-outs for plugs, controls, displays, and 
LEDs. For the case, a corresponding generator is 
developed and validated with different PCB assemblies. 

4. CASE: PCB ENCLOSURE GENERATOR
The idea of the generator is to use any PCB assembly 

built in the CAD system Autodesk Inventor (Fig. 2) and 
create an individual enclosure for it. To limit the solution 
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space, only rectangular boards with one mounting hole 
per corner are considered. After using the generator, the 
user should receive 3D print-ready files for the parts of 
the enclosure.

Fig. 2. PCB assembly

4.1. System Specification

The user has to supply a suitable PCB assembly in 
Autodesk Inventor. The assembly file needs to contain 
the board (with mounting holes as hole features) and the 
electronic components as parts. The generator should 
function optimally when utilizing SMD components.
Plugs and connectors need to be placed on the edge of 
the board since the initial version of the generator does 
not check for their accessibility. Additional inputs 
include wall thickness, corner radius, clearances between 
enclosure and electronic components as well as the
clearance between the enclosure and the board.

The generated enclosure should be exported in 
formats that are usual for 3D printing, such as .stl, .stp, 
or .obj. Basic manufacturing restrictions, e.g. minimum 
wall thicknesses, bar widths, and radii, need to be 
followed.

4.2. Program Flow

The generator is based on a parametric model of an 
enclosure half, which is fitted to the supplied PCB. The 
altered enclosure half is then augmented by the addition 
of cut-outs for the connectors and LEDs/displays. 

Fig. 3 shows the program flow of the enclosure 
generator. Once the generator has been started, a suitable 
assembly file must be loaded into the generator. Once 
this has been completed, a preview image of the 
complete circuit board will appear. The next step is to 
select and confirm the board part, after which the user 
can select and confirm the connector, LED, and display 
parts, each of which must be confirmed. The user can 
then enter the user-configured dimensions, which are 
confirmed by pressing the Next button. Finally, the 
enclosure halves are created and joined together. A 
preview of the enclosure is now visible. To save the 
generated enclosure, a storage folder must first be 
selected. Several export formats are available for 3D 
printing and can be chosen. The user may then trigger the 
saving and exporting processes via the Export button. 

The ‘PCB enclosure’ folder, which contains all files, is 
now located in the selected storage location.

Fig. 3. Flowchart of the general program

4.3. Implementation

The implementation was carried out using C# for the 
underlying logic and Inventor for the 3D modeling. The 
logic was divided into different classes.

To analyze the given PCB assembly, a circuit board 
class was employed. The class constructor is used to 
obtain the background instance of Inventor and to open 
the assembly file. The method is used to generate a list of 
all parts contained in the assembly. This list is then used 
to select the parts that are the board, connectors, or 
displays/LEDs. The method AnalyseBoard takes a string 
that represents the name of the board part and provides 
the board's measurements, which include the general size 
of the board, hole sizes and hole positions, the height of 
the components on top and on the bottom of the board, 
and the position of the board in the assembly. A list of 
CutOuts and the methods AddConnectorToCutOuts and 
AddLEDToCutOuts were created for the purpose of 
storing connectors and displays/LEDs that should be cut 
out of the enclosure. CutOut is a class that is used to 
store the data needed to generate the hole in the 
enclosure. This data includes the size, position, and type 
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of the underlying component. The 
AddConnectorToCutOuts and AddLEDToCutOuts 
methods accept a string representing the desired 
component name and generate a new instance of the 
CutOut class, populated with the required dimensions,
and add it to the CutOuts list.

In order to ascertain the dimensions of the 
standardized parts utilized in the enclosure, a 
StandardizedParts class was created. This class utilizes a
spreadsheet file as its database, which contains the 
measurements of the ISO 7045 screws and the inserts 
used to join the enclosure halves. The class constructor 
creates a new background instance of Excel that will be 
employed to access the database. The following methods 
were created for obtaining the measurements: 
GetInsertHoleDia, GetScrewHeadDia, 
GetScrewHeadHeight, and GetScrewDiameter. These 
methods accept the diameter of the circuit board hole as 
an argument and return the corresponding dimension of 
the part with the largest thread diameter that is still able 
to fit through the holes in the circuit board.

To generate the enclosure halves from the collected 
data in the circuit board class, a parametric model was 
employed as a template for an enclosure half and an 
Enclosure class containing the underlying logic. The 
template consists of a generic enclosure half that uses
parameters for all of its dimensions. Furthermore, the 
inside walls were named in order to enable easy 
referencing when creating the cut-outs. The constructor 
of the Enclosure class is utilized to obtain the parameters 
of the enclosure, which originate from user inputs and
the instances of the CircuitBoard and StandardizedParts
classes used within the main part of the program.
Moreover, the constructor is passed the background 
instance of inventor to manipulate the template. The 
parameters can be applied to the model via the 
_SetParameters method, which also creates through-
holes for screws if the instance is for a lower enclosure 
half. The cutouts created using an instance of the 
CircuitBoard class can be passed to the class by the 
method AddCutOut, which takes a CutOut as a 
parameter. The method _AddCutOutsToModell takes the 
saved CutOuts and applies them to the model. This is 
achieved by first determining the side on which the cut-
out should be placed. Connector CutOuts are placed in 
the face that is intercepted by the underlying connector, 
while LED/display CutOuts are placed in the face across 
from the underlying component. Thereafter, a sketch is 
initiated on the referenced face and a rectangle contour is 
drawn with the size and position of the CutOut that is 
being processed. Subsequently, the rectangle is extruded 
through the wall of the enclosure to create the cut-out, 
this process is repeated for each CutOut saved in the 
instance. To create and save the enclosure, the Save 
method is employed. This method first opens the 
template and then employs the methods _SetParameters 
and _AddCutOutsToModel to create the desired model. 
The Save method takes a file path as a string, which is 
where the customized model is saved. Additionally, the 
class contains methods for exporting the saved models as 
.stl, .obj, and .step files.

To generate an assembly containing the PCB, both 
enclosure halves, and the screws, the class 

MergeAssembly was created. The constructor is passed 
the background instance of Inventor, which is then used 
to create the assembly document. The method AddPCB 
is used to add the PCB in the center of the assembly. 
Therefore, the file path and a position matrix are passed 
to the method. The AddTopEnclosureHalf and 
AddBottomEnclosureHalf methods are employed to 
position the enclosure halves. These methods are once 
again passed the filepaths of the enclosure halves and 
additionally the height of the PCB. The methods then 
generate a position matrix for positioning the enclosure 
halves, with the PCB height used as the offset in the z-
direction. Finally, the AddScrews method is used to add 
the screws to the assembly. The method is then passed 
the dimensions of the board, the enclosure, and the 
screws. With the dimensions of the screws, the 
appropriate part is identified in the Inventor Content 
Center. This part is then placed in each screw hole using 
position matrices and dimensions of the enclosure and 
board. The method Save is used to save the assembly to 
the given path. To obtain all the necessary files for using 
the assembly on another machine, the method 
PackAndGo was created. This method employs the Pack 
and Go feature present in Inventor. This feature is used 
to package a file and all of its referenced files into a 
single location. The method is passed the path of the 
assembly and the path where the files should be saved.

In order to facilitate the management of file paths, a 
Save class was implemented. This class is employed to 
generate temporary paths for the storage of files, to 
delete the aforementioned temporary paths once they 
have been used, to generate a folder structure and the 
associated paths for the saving of documents, and finally 
to generate a method for the creation of a .zip archive of 
the aforementioned documents. The constructor is used 
to obtain the temporary folder on the machine. A number 
of methods were implemented that returned the 
corresponding path as a string. For example, GetPathTop 
was responsible for returning the temporary path of the 
top enclosure half. To clear the temporary files created 
by the program, the method DeleteFiles was employed. 
To generate the file structure used to save the generated 
files, the method ExportFiles was implemented. This 
method generates a main folder and subfolders for saving 
the CAD files and the exported enclosure halves. To 
generate a .zip archive from the generated folder 
structure, a MakeZip method was created.

Fig. 4. PCB enclosure generator input GUI

121



In order to facilitate seamless user interaction, a 
graphical user interface (GUI) was implemented using 
the Windows Forms framework. Fig. 4 shows the input 
form of the generator.

4.4. Testing

To be able to use the generator, it must first be 
installed from the GitHub repository. After installation, 
the enclosure generator can be started via the shortcut on 
the desktop.

For testing, different PCB assemblies were input in 
the generator and the look and feel as well as the 
performance and validity of the generated enclosures was 
assessed. Fig. 5 and Fig. 6 show examples of the test 

PCBs. The test PCBs cover connectors and displays from 
various orientations and counts.

The generator could create the corresponding 
enclosures error-free and efficiently. Besides the 
declaration of the PCB, no further user interaction was 
needed and no rework of the enclosures. In order to 
check the manufacturability, a selection of enclosures 
was input into a slicer and was processed without 
warnings. Nonetheless, the generator reaches its limits 
with the wall thickness, as only a narrow wall thickness 
range is possible.

Additionally, the generator was tested with an 
assembly containing different through-hole-technology 
components. Here, the cut-out orientation was not 
reliably detected.

Fig. 5. Test Case #1: a) PCB assembly b) PCB with enclosure c) Section view

Fig. 6. Test Case #2: a) PCB assembly b) PCB with enclosure c) Section view
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5. DISCUSSION
The intended functionality of the enclosure generator 

is given. Nonetheless, there are several avenues for 
improvement. Besides upgrades regarding functionality 
like mentioned above with the through-hole-technology 
components, an issue that was discovered during testing 
is the declaration of the cut-out relevant components. For 
heavily equipped PCBs, the list of components for 
selection gets quite long and sometimes confusing. An 
organizational solution to this would be the 
recommendation of a naming scheme for the components 
or the integration of a library. The generator could then 
process the information coded in the name or properties 
and decide by itself if a cut-out is obliged for the 
component without further user interaction.

The example use case of the PCB enclosure is a place 
holder for designs that include both first-order and 
higher-order degrees of freedom in the geometric model.
The first-order ones comprise the dimensions of the 
enclosure halves such as length, width, height, wall 
thickness, and corner radius. 

The higher-order degrees of freedom encompass 
count, position, and orientation of the needed cut-outs 
which the algorithmic part of the generator adds to the 
enclosure. It would be possible to integrate these into a 
parametric CAD master model. Therefore, a maximum 
count of cut-outs on each face would be included as 
single features and suppression states would have to be 
controlled additionally to the position and orientation. 
This seems to be a suitable solution for rectangular cut-
outs as implemented in the current version of the 
generator. Considering that the shape of the cut-outs 
usually varies according to the corresponding component 
(like slots for USB-C connectors), a master model would 
have to include all of them in sufficient count. Since the 
definition of these features is an inherent part of the 
digital master, the model grows and gets slower in 
loading, processing, and rebuilding. In contrast to this, 
the algorithmic part of the generator could easily be 
enhanced by different cut-out shapes so that this 
behaviour could be avoided.

From an implementation point of view, other 
definitions of the cut-outs would be possible. The current 
version uses a very basic approach of defining a new 
sketch, creating the 2D polygon for the cut-out shape and 
applying the extrusion command to this. User-defined 
features (in Inventor iFeatures) represent a different 
approach. To apply them to the CAD model, reference 
geometry needs to be declared, such as insertion plane 
and point. If this is beneficial for the later model 
performance or for reducing coding effort in the 
algorithmic part of the generator was not tested during 
the case study.

6. CONCLUSION
Approaches for implementing knowledge-based 

engineering methods in geometric modeling contribute to 
reducing effort for variant creation and increasing the 
quality of design artefacts. In the case study presented in 
this article, both knowledge-based CAD and algorithmic 
modeling was applied to model a solution space of 
cuboid PCB enclosures. The model addresses first-order 

and higher-order degrees of freedom. To raise the 
efficiency, the algorithmic part of the enclosure 
generator is applied to the higher-order degrees of 
freedom since their translation into features and 
parameters goes along with a loss of performance of the 
resulting CAD master model.

Still, the implemented generator works on a 
parametric CAD kernel, here the Autodesk 
ShapeManager used in Inventor Professional. This means 
that the geometry description follows strict rules and 
methods, which enable parametrics, feature history, and 
various internal consistency checks. Additionally to the 
geometry model, the so called model-based definition 
adds information about tolerances, surface treatment, and 
material to distinct geometric elements. In the case of the 
enclosure, the intended output is a 3D printable design in 
a neutral printable format, e.g. .stl, for which the model-
based definition is unnecessary. 

Other design approaches, such as those known e.g. 
from computer graphics, reduce the geometric model to 
the definition of vertices, edges, and faces. The necessary 
commands to model the cuboid enclosure halves are 
straightforward. A suitable environment for such an 
implementation would be Rhino Grasshopper. The 
performance assessment and comparison of both 
implementations is an obvious next research aim.
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