
Abstract: Computational design systems offer diverse
opportunities for capturing and reusing engineering
knowledge and design intent. Two approaches are
knowledge-based computer-aided design (CAD) and
algorithmic modeling. While the first uses mathematical
and logical constraints, design rules, and reasoning to
control the parameters of a CAD model, the latter
abstracts the modeling process of the geometry itself.
This paper explores the combination of both approaches
and how their strengths contribute to efficient modeling
of geometric solution spaces. This is investigated on the
example of a generator for enclosures of printed circuit
boards. The generator was implemented as a remote
control for the CAD system Autodesk Inventor in C#.
Key Words: Design Automation, Knowledge-Based
Engineering, Algorithmic Design, Computer-Aided
Design, Solution Space Modeling

1. INTRODUCTION
Today’s computational design systems offer plenty of

possibilities to capture and reuse knowledge and design
intent. Design automation does not only reduce the error
rate and the time required for modeling tasks but it can
also be scaled to optimize downstream development
processes (Kuegler et al., 2023; Verhagen et al., 2012).
Parametric and chronology-based computer-aided design
(CAD) systems offer different techniques build
geometric solution space models and so to automate
especially variant design activities. These reach from
mathematical and logical constraints, design rules, and
reasoning up to knowledge-based CAD configuration
(Poot et al., 2020; Gembarski 2018; Amadori et al.,
2012). In contrast, algorithmic modeling emphasizes
abstracting and modeling the modeling process itself, not
just using simple sequential macros, but creating
intelligent interactive model generators. (Fuchs et al.,
2022; Müller et al., 2021; Tedeschi & Lombardi, 2018).

Knowledge-based CAD has advantages such as
consistent subsequent geometry adaptation and including
additional information to the parameters like tolerance
data. Disadvantageous is the necessity of an initial
geometric model with defined addressable parameters

and references which may lead to an inefficient model
setup. In contrast, the algorithmic modeling approach
doesn’t require a master model and is thus favourable for
complex geometries (Gadeyne et al., 2014; Chakrabarti
et al., 2011).

The question arises how a complementary application
of both approaches could lead to a more efficient
modeling and better performance of geometric solution
space models. This paper explores the combination of
knowledge-based CAD and algorithmic modeling in
printed circuit board (PCB) enclosure design. The
generator was implemented as a remote control for the
CAD system Autodesk Inventor in C#. The scientific and
practical contribution is an application case to illustrate
the applicability of algorithmic modeling in parametric,
chronology-based CAD systems to exploit the
advantages of both technologies.

2. THEORETICAL BACKGROUND
The concepts of knowledge-based engineering (KBE)

and design automation involve a paradigm shift in
computer-aided product modeling. Instead of designing a
single product variant, the goal is to develop a solution
space, from which a variant can easily be derived based
on requirements. This includes two perspectives, first
how to model the solution space and second how to
explore it (Gembarski, 2020; Zhang, 2014; Skarka 2007).

2.1. Knowledge-Based CAD

Knowledge-based CAD is a 3D modeling principle
which adds reasoning capabilities to a geometric model
that enables it to draw conclusions from the design
context (Ortner-Pichler & Landschützer, 2022; Hirz et
al., 2013). It is grounded on parametric and feature-based
design (Fig. 1). The first means to differentiate between
shape and its describing parameters, the latter describes
semantic objects that represent geometric building blocks
enhanced with behaviour (VDI2209:2009).

Today's CAD systems offer different options for
creating knowledge-based product models. Defining
logical and mathematical relations between parameters
allows to differentiate between leading and driven
parameters. As a consequence, the designer additionally

COMBINING KNOWLEDGE-BASED CAD
AND ALGORITHMIC MODELING FOR

DESIGN AUTOMATION
Paul Christoph Gembarski [0000-0002-2642-3445], Bilal Ibrahimi [0009-0006-1230-7052],

Nikolas Plett [0009-0007-1987-1833], Maxim Stötzer [0009-0001-4140-5894],
Institute of Product Development, Leibniz Universität Hannover,

An der Universität 1, 30823 Garbsen, Germany

11th International Conference on Customization and
Personalization MCP 2024
The Power of Customization and Personalization
in the Digital Age
September 25-26, 2024, Novi Sad, Serbia

118

has to plan the configuration concept and
parameterization of the component (Aranburu et al.,
2022; Camba et al., 2016).

Fig. 1. Overview of the principles of 3D modeling
(VDI2209:2009)

Supporting this, users can define additional
parameters for length or angular dimensions and for, e.g.,
forces or moments of inertia. This incorporates
integrating extensive mathematical formulas into the
CAD model, e.g. for dimensioning or proof calculation,
streamlining user workflow (Raffaeli & Germani, 2010).

Additionally, many CAD systems allow the
definition of design rules as if-then-else statements.
These rules link e.g. the suppression state of features or
components to parameters (Grković et al., 2020;
Gembarski, 2018; Myung & Han, 2001).

A well-structured model setup with parameters at
various hierarchy levels is imperative as components
become more complex. For this, CAD models can relate
to skeletons that define the positioning of components
and features and their geometrical characteristics (Li et
al. 2018; Demoly & Roth, 2017).

The control of parameters can be further externalized
by using spreadsheets, providing additional mathematical
and statistical capabilities beyond the CAD system. E.g.,
by integrating lookup tables, it becomes possible to
efficiently select standard parts based on geometric or
load information and integrate basic reasoning (Peng &
Ridgway, 1993). Another way to integrate reasoning in
CAD systems is through script languages and macros or
external knowledge-based systems to determine
parameters (Gembarski, 2018; Hirz et al., 2013). In such
a way, it is also possible to include non-geometric
components such as service features of a product-service
system (Guillon et al., 2022; Kloock-Schreiber et al.,
2020; Elgammal et al., 2017).

2.2. Algorithmic Modeling

In algorithmic modeling, the focus is on automating
the design process rather than pre-formulated solutions.
Therefore, a design problem needs to be formalized in a
way that algorithms can get from an initial situation, e.g.
the statement of requirements, to generating a geometric
model (Zuo et al., 2023; Müller et al., 2021; Chakrabarti

et al., 2011). Algorithms are used to extract product
properties from requirements, build product design rules
also taking into account external data or numerical
simulations, and alter the geometry in a rule-based
manner (Caetano et al., 2020; Zboinska, 2015).

There are multiple ways to create an algorithm-based
product model. One method is to use an application
programming interface (API), design language or expert
system shell to drive a CAD kernel (Gembarski, 2022;
Frank et al., 2014; Ma et al., 2012). Another method is
the generation of polygonal or NURBS-based geometric
models (Zboinska, 2015). An example is the
Grasshopper add-on for Rhinoceros (Oxman, 2017).
Additional application of algorithms for evaluation and
optimization of the geometry during generation is
possible (Boretti et al., 2023; Cubukcuoglu et al., 2019;
Holzer, 2016).

Algorithmic modeling aims to generate an individual
product for each set of customer requirements. This is
particularly favorable for complex geometries and pure
configuration designs but largely restricts subsequent
parametric editing of the variant. Instead, requirements
and design rules need to be altered to create the updated
version (Biedermann & Meboldt, 2020; Queiroz et al.,
2015).

3. RESEARCH OBJECTIVES AND METHODS
The body of literature concerning KBE is

widespread. Nonetheless, there are only few case studies
that report in detail about knowledge bases, the
implementation in CAD, and the transfer from the case
under consideration to other ones (Kuegler et al., 2023;
Plappert et al., 2020; Verhagen et al., 2012). By nature,
parameter planning of knowledge-based CAD models
concentrates on defining and constraining parameters in
the sense of single variable domains. Since many feature
definitions contain multiple parameters for dimensions,
references, and orientations, designers often use multiple
instances of them. If, e.g., a cut-out feature is situated
once on the left and once on the right side depending on
the variant, the necessary feature is activated by a
topological parameter that controls the suppression state
of the feature.

The question arises if a better performance can be
achieved when features with such higher-order degrees
of freedom, i.e., compound parameters and references,
are algorithmically modeled. Studies about such a joint
application of knowledge-based CAD and algorithmic
modeling are scarce. To explore this, we follow design
science research (Peffers et al., 2007; Hevner, 2007). As
a case study we chose a generator for PCB enclosures as
this combines a parametric design – the actual cuboid
enclosure with both halves and the connecting screws –
and an algorithmic part that generates an arbitrary
number of cut-outs for plugs, controls, displays, and
LEDs. For the case, a corresponding generator is
developed and validated with different PCB assemblies.

4. CASE: PCB ENCLOSURE GENERATOR
The idea of the generator is to use any PCB assembly

built in the CAD system Autodesk Inventor (Fig. 2) and
create an individual enclosure for it. To limit the solution

119

space, only rectangular boards with one mounting hole
per corner are considered. After using the generator, the
user should receive 3D print-ready files for the parts of
the enclosure.

Fig. 2. PCB assembly

4.1. System Specification

The user has to supply a suitable PCB assembly in
Autodesk Inventor. The assembly file needs to contain
the board (with mounting holes as hole features) and the
electronic components as parts. The generator should
function optimally when utilizing SMD components.
Plugs and connectors need to be placed on the edge of
the board since the initial version of the generator does
not check for their accessibility. Additional inputs
include wall thickness, corner radius, clearances between
enclosure and electronic components as well as the
clearance between the enclosure and the board.

The generated enclosure should be exported in
formats that are usual for 3D printing, such as .stl, .stp,
or .obj. Basic manufacturing restrictions, e.g. minimum
wall thicknesses, bar widths, and radii, need to be
followed.

4.2. Program Flow

The generator is based on a parametric model of an
enclosure half, which is fitted to the supplied PCB. The
altered enclosure half is then augmented by the addition
of cut-outs for the connectors and LEDs/displays.

Fig. 3 shows the program flow of the enclosure
generator. Once the generator has been started, a suitable
assembly file must be loaded into the generator. Once
this has been completed, a preview image of the
complete circuit board will appear. The next step is to
select and confirm the board part, after which the user
can select and confirm the connector, LED, and display
parts, each of which must be confirmed. The user can
then enter the user-configured dimensions, which are
confirmed by pressing the Next button. Finally, the
enclosure halves are created and joined together. A
preview of the enclosure is now visible. To save the
generated enclosure, a storage folder must first be
selected. Several export formats are available for 3D
printing and can be chosen. The user may then trigger the
saving and exporting processes via the Export button.

The ‘PCB enclosure’ folder, which contains all files, is
now located in the selected storage location.

Fig. 3. Flowchart of the general program

4.3. Implementation

The implementation was carried out using C# for the
underlying logic and Inventor for the 3D modeling. The
logic was divided into different classes.

To analyze the given PCB assembly, a circuit board
class was employed. The class constructor is used to
obtain the background instance of Inventor and to open
the assembly file. The method is used to generate a list of
all parts contained in the assembly. This list is then used
to select the parts that are the board, connectors, or
displays/LEDs. The method AnalyseBoard takes a string
that represents the name of the board part and provides
the board's measurements, which include the general size
of the board, hole sizes and hole positions, the height of
the components on top and on the bottom of the board,
and the position of the board in the assembly. A list of
CutOuts and the methods AddConnectorToCutOuts and
AddLEDToCutOuts were created for the purpose of
storing connectors and displays/LEDs that should be cut
out of the enclosure. CutOut is a class that is used to
store the data needed to generate the hole in the
enclosure. This data includes the size, position, and type

120

of the underlying component. The
AddConnectorToCutOuts and AddLEDToCutOuts
methods accept a string representing the desired
component name and generate a new instance of the
CutOut class, populated with the required dimensions,
and add it to the CutOuts list.

In order to ascertain the dimensions of the
standardized parts utilized in the enclosure, a
StandardizedParts class was created. This class utilizes a
spreadsheet file as its database, which contains the
measurements of the ISO 7045 screws and the inserts
used to join the enclosure halves. The class constructor
creates a new background instance of Excel that will be
employed to access the database. The following methods
were created for obtaining the measurements:
GetInsertHoleDia, GetScrewHeadDia,
GetScrewHeadHeight, and GetScrewDiameter. These
methods accept the diameter of the circuit board hole as
an argument and return the corresponding dimension of
the part with the largest thread diameter that is still able
to fit through the holes in the circuit board.

To generate the enclosure halves from the collected
data in the circuit board class, a parametric model was
employed as a template for an enclosure half and an
Enclosure class containing the underlying logic. The
template consists of a generic enclosure half that uses
parameters for all of its dimensions. Furthermore, the
inside walls were named in order to enable easy
referencing when creating the cut-outs. The constructor
of the Enclosure class is utilized to obtain the parameters
of the enclosure, which originate from user inputs and
the instances of the CircuitBoard and StandardizedParts
classes used within the main part of the program.
Moreover, the constructor is passed the background
instance of inventor to manipulate the template. The
parameters can be applied to the model via the
_SetParameters method, which also creates through-
holes for screws if the instance is for a lower enclosure
half. The cutouts created using an instance of the
CircuitBoard class can be passed to the class by the
method AddCutOut, which takes a CutOut as a
parameter. The method _AddCutOutsToModell takes the
saved CutOuts and applies them to the model. This is
achieved by first determining the side on which the cut-
out should be placed. Connector CutOuts are placed in
the face that is intercepted by the underlying connector,
while LED/display CutOuts are placed in the face across
from the underlying component. Thereafter, a sketch is
initiated on the referenced face and a rectangle contour is
drawn with the size and position of the CutOut that is
being processed. Subsequently, the rectangle is extruded
through the wall of the enclosure to create the cut-out,
this process is repeated for each CutOut saved in the
instance. To create and save the enclosure, the Save
method is employed. This method first opens the
template and then employs the methods _SetParameters
and _AddCutOutsToModel to create the desired model.
The Save method takes a file path as a string, which is
where the customized model is saved. Additionally, the
class contains methods for exporting the saved models as
.stl, .obj, and .step files.

To generate an assembly containing the PCB, both
enclosure halves, and the screws, the class

MergeAssembly was created. The constructor is passed
the background instance of Inventor, which is then used
to create the assembly document. The method AddPCB
is used to add the PCB in the center of the assembly.
Therefore, the file path and a position matrix are passed
to the method. The AddTopEnclosureHalf and
AddBottomEnclosureHalf methods are employed to
position the enclosure halves. These methods are once
again passed the filepaths of the enclosure halves and
additionally the height of the PCB. The methods then
generate a position matrix for positioning the enclosure
halves, with the PCB height used as the offset in the z-
direction. Finally, the AddScrews method is used to add
the screws to the assembly. The method is then passed
the dimensions of the board, the enclosure, and the
screws. With the dimensions of the screws, the
appropriate part is identified in the Inventor Content
Center. This part is then placed in each screw hole using
position matrices and dimensions of the enclosure and
board. The method Save is used to save the assembly to
the given path. To obtain all the necessary files for using
the assembly on another machine, the method
PackAndGo was created. This method employs the Pack
and Go feature present in Inventor. This feature is used
to package a file and all of its referenced files into a
single location. The method is passed the path of the
assembly and the path where the files should be saved.

In order to facilitate the management of file paths, a
Save class was implemented. This class is employed to
generate temporary paths for the storage of files, to
delete the aforementioned temporary paths once they
have been used, to generate a folder structure and the
associated paths for the saving of documents, and finally
to generate a method for the creation of a .zip archive of
the aforementioned documents. The constructor is used
to obtain the temporary folder on the machine. A number
of methods were implemented that returned the
corresponding path as a string. For example, GetPathTop
was responsible for returning the temporary path of the
top enclosure half. To clear the temporary files created
by the program, the method DeleteFiles was employed.
To generate the file structure used to save the generated
files, the method ExportFiles was implemented. This
method generates a main folder and subfolders for saving
the CAD files and the exported enclosure halves. To
generate a .zip archive from the generated folder
structure, a MakeZip method was created.

Fig. 4. PCB enclosure generator input GUI

121

In order to facilitate seamless user interaction, a
graphical user interface (GUI) was implemented using
the Windows Forms framework. Fig. 4 shows the input
form of the generator.

4.4. Testing

To be able to use the generator, it must first be
installed from the GitHub repository. After installation,
the enclosure generator can be started via the shortcut on
the desktop.

For testing, different PCB assemblies were input in
the generator and the look and feel as well as the
performance and validity of the generated enclosures was
assessed. Fig. 5 and Fig. 6 show examples of the test

PCBs. The test PCBs cover connectors and displays from
various orientations and counts.

The generator could create the corresponding
enclosures error-free and efficiently. Besides the
declaration of the PCB, no further user interaction was
needed and no rework of the enclosures. In order to
check the manufacturability, a selection of enclosures
was input into a slicer and was processed without
warnings. Nonetheless, the generator reaches its limits
with the wall thickness, as only a narrow wall thickness
range is possible.

Additionally, the generator was tested with an
assembly containing different through-hole-technology
components. Here, the cut-out orientation was not
reliably detected.

Fig. 5. Test Case #1: a) PCB assembly b) PCB with enclosure c) Section view

Fig. 6. Test Case #2: a) PCB assembly b) PCB with enclosure c) Section view

122

5. DISCUSSION
The intended functionality of the enclosure generator

is given. Nonetheless, there are several avenues for
improvement. Besides upgrades regarding functionality
like mentioned above with the through-hole-technology
components, an issue that was discovered during testing
is the declaration of the cut-out relevant components. For
heavily equipped PCBs, the list of components for
selection gets quite long and sometimes confusing. An
organizational solution to this would be the
recommendation of a naming scheme for the components
or the integration of a library. The generator could then
process the information coded in the name or properties
and decide by itself if a cut-out is obliged for the
component without further user interaction.

The example use case of the PCB enclosure is a place
holder for designs that include both first-order and
higher-order degrees of freedom in the geometric model.
The first-order ones comprise the dimensions of the
enclosure halves such as length, width, height, wall
thickness, and corner radius.

The higher-order degrees of freedom encompass
count, position, and orientation of the needed cut-outs
which the algorithmic part of the generator adds to the
enclosure. It would be possible to integrate these into a
parametric CAD master model. Therefore, a maximum
count of cut-outs on each face would be included as
single features and suppression states would have to be
controlled additionally to the position and orientation.
This seems to be a suitable solution for rectangular cut-
outs as implemented in the current version of the
generator. Considering that the shape of the cut-outs
usually varies according to the corresponding component
(like slots for USB-C connectors), a master model would
have to include all of them in sufficient count. Since the
definition of these features is an inherent part of the
digital master, the model grows and gets slower in
loading, processing, and rebuilding. In contrast to this,
the algorithmic part of the generator could easily be
enhanced by different cut-out shapes so that this
behaviour could be avoided.

From an implementation point of view, other
definitions of the cut-outs would be possible. The current
version uses a very basic approach of defining a new
sketch, creating the 2D polygon for the cut-out shape and
applying the extrusion command to this. User-defined
features (in Inventor iFeatures) represent a different
approach. To apply them to the CAD model, reference
geometry needs to be declared, such as insertion plane
and point. If this is beneficial for the later model
performance or for reducing coding effort in the
algorithmic part of the generator was not tested during
the case study.

6. CONCLUSION
Approaches for implementing knowledge-based

engineering methods in geometric modeling contribute to
reducing effort for variant creation and increasing the
quality of design artefacts. In the case study presented in
this article, both knowledge-based CAD and algorithmic
modeling was applied to model a solution space of
cuboid PCB enclosures. The model addresses first-order

and higher-order degrees of freedom. To raise the
efficiency, the algorithmic part of the enclosure
generator is applied to the higher-order degrees of
freedom since their translation into features and
parameters goes along with a loss of performance of the
resulting CAD master model.

Still, the implemented generator works on a
parametric CAD kernel, here the Autodesk
ShapeManager used in Inventor Professional. This means
that the geometry description follows strict rules and
methods, which enable parametrics, feature history, and
various internal consistency checks. Additionally to the
geometry model, the so called model-based definition
adds information about tolerances, surface treatment, and
material to distinct geometric elements. In the case of the
enclosure, the intended output is a 3D printable design in
a neutral printable format, e.g. .stl, for which the model-
based definition is unnecessary.

Other design approaches, such as those known e.g.
from computer graphics, reduce the geometric model to
the definition of vertices, edges, and faces. The necessary
commands to model the cuboid enclosure halves are
straightforward. A suitable environment for such an
implementation would be Rhino Grasshopper. The
performance assessment and comparison of both
implementations is an obvious next research aim.

7. REFERENCES
Amadori, K., Tarkian, M., Ölvander, J. & Krus, M.
(2012) Flexible and robust CAD models for design
automation. Advanced Engineering Informatics. 26 (2),
180-195. DOI: 10.1016/j.aei.2012.01.004

Aranburu, A., Cotillas, J., Justel, D., Contero, M., &
Camba, J.D. (2022). How does the modeling strategy
influence design optimization and the automatic
generation of parametric geometry variations?.
Computer-Aided Design, 151, 103364. DOI:
10.1016/j.cad.2022.103364

Biedermann, M., & Meboldt, M. (2020). Computational
design synthesis of additive manufactured multi-flow
nozzles. Additive Manufacturing, 35, 101231. DOI:
10.1016/j.addma.2020.101231

Boretti, V., Sardone, L., Bohórquez Graterón, L. A.,
Masera, D., Marano, G. C., & Domaneschi, M. (2023).
Algorithm-aided design for composite bridges.
Buildings, 13 (4), 865. DOI: 10.3390/buildings13040865

Caetano, I., Santos, L., & Leitão, A. (2020).
Computational design in architecture: Defining
parametric, generative, and algorithmic design. Frontiers
of Architectural Research, 9 (2), 287-300. DOI:
10.1016/j.foar.2019.12.008

Camba, J. D., Contero, M., & Company, P. (2016).
Parametric CAD modeling: An analysis of strategies for
design reusability. Computer-Aided Design, 74, 18-31.
DOI: 10.1016/j.cad.2016.01.003

Chakrabarti, A., Shea, K., Stone, R., Cagan, J.,
Campbell, M., Vargas-Hernandez, N., & Wood, K.L.
(2011). Computer-based design synthesis research: An
overview. Journal of computing and information science

123

in engineering, 11 (2), 021003-1. DOI:
10.1115/1.3593409

Cubukcuoglu, C., Ekici, B., Tasgetiren, M. F., &
Sariyildiz, S. (2019). OPTIMUS: self-adaptive
differential evolution with ensemble of mutation
strategies for grasshopper algorithmic modeling.
Algorithms, 12 (7), 141. DOI: 10.3390/a12070141

Demoly, F., & Roth, S. (2017). Knowledge-based
parametric CAD models of configurable biomechanical
structures using geometric skeletons. Computers in
Industry, 92, 104-117. DOI:
10.1016/j.compind.2017.06.006

Elgammal, A., Papazoglou, M., Krämer, B., &
Constantinescu, C. (2017). Design for customization: a
new paradigm for product-service system development.
Procedia Cirp, 64, 345-350. DOI:
10.1016/j.procir.2017.03.132

Frank, G., Entner, D., Prante, T., Khachatouri, V., &
Schwarz, M. (2014). Towards a generic framework of
engineering design automation for creating complex
CAD models. International Journal on Advances in
Systems and Measurements, 7 (1), 179-192.

Fuchs, D., Bartz, R., Kuschmitz, S., & Vietor, T. (2022).
Necessary advances in computer-aided design to
leverage on additive manufacturing design freedom.
International Journal on Interactive Design and
Manufacturing, 16 (4), 1633-1651. DOI:
10.1007/s12008-022-00888-z

Gadeyne, K., Pinte, G., & Berx, K. (2014). Describing
the design space of mechanical computational design
synthesis problems. Advanced Engineering Informatics,
28 (3), 198-207. DOI: 10.1016/j.aei.2014.03.004

Gembarski, P.C. (2018). Komplexitätsmanagement
mittels wissensbasiertem CAD: Ein Ansatz zum
unternehmenstypologischen Management konstruktiver
Lösungsräume. Garbsen, TEWISS.

Gembarski, P.C. (2020). The meaning of solution space
modeling and knowledge-based product configurators for
smart service systems. In: Świątek, J., Borzemski, L.,
Wilimowska, Z. (eds) Information Systems Architecture
and Technology: Proceedings of 40th Anniversary
International Conference on Information Systems
Architecture and Technology – ISAT 2019. Advances in
Intelligent Systems and Computing, vol 1051. Springer,
Cham. DOI: 10.1007/978-3-030-30440-9_4

Gembarski, P.C. (2022). Joining constraint satisfaction
problems and configurable cad product models: a step-
by-step implementation guide. Algorithms, 15 (9), 318.
DOI: 10.3390/a15090318

Grković, V., Kolarevic, M., Petrović, A., & Bjelić, M.
(2020). CAD configurator for automatic configuration of
modular strongrooms. In Proceedings of the 9th
International Conference on Mass Customization and
Personalization-Community of Europe (MCE-CE 2020),
University of Novi Sad-Faculty of Technical Sciences:
Novi Sad, Serbia, pp. 85–92.

Guillon, D., Ayachi, R., Vareilles, É., Aldanondo, M.,
Villeneuve, É., & Merlo, C. (2021). Product-service
system configuration: a generic knowledge-based model
for commercial offers. International Journal of
Production Research, 59 (4), 1021-1040. DOI:
10.1080/00207543.2020.1714090

Hevner, A. R. (2007). A three cycle view of design
science research. Scandinavian journal of information
systems, 19 (2), 4.

Hirz, M., Dietrich, W., Gfrerrer, A., & Lang, J. (2013).
Integrated computer-aided design in automotive
development. Berlin, Heidelberg, Springer. DOI:
10.1007/978-3-642-11940-8

Holzer, D. (2016). Design exploration supported by
digital tool ecologies. Automation in Construction, 72, 3-
8. DOI: 10.1016/j.autcon.2016.07.003

Kloock-Schreiber, D., Domarkas, L., Gembarski, P. C.,
& Lachmayer, R. (2019). Enrichment of geometric CAD
models for service configuration. In CEUR workshop
proceedings; Vol. 2467, pp. 22-29. Aachen, Germany:
RWTH Aachen. DOI: 10.15488/9272

Kuegler, P., Dworschak, F., Schleich, B., & Wartzack, S.
(2023). The evolution of knowledge-based engineering
from a design research perspective: Literature review
2012–2021. Advanced Engineering Informatics. 55,
101892. DOI: 10.1016/j.aei.2023.101892

Li, H., Gembarski, P.C., & Lachmayer, R. (2018).
Template-based design for design co-creation. In
Proceedings of the fifth international conference on
design creativity (ICDC 2018), University of Bath, Bath,
UK, pp. 387-394.

Ma, C. Y., Ma, C. H., Chu, D. Q., & Yang, Z. F. (2012).
AutoLISP drawing using the second development of
AutoCAD. Advanced Materials Research, 562, 993-996.
DOI: 10.4028/www.scientific.net/AMR.562-564.993

Müller, P., Gembarski, P.C., & Lachmayer, R. (2022).
Parametric topology synthesis of a short-shaft hip
endoprosthesis based on patient-specific osteology. In
Towards Sustainable Customization: Bridging Smart
Products and Manufacturing Systems: Proceedings of
the 8th Changeable, Agile, Reconfigurable and Virtual
Production Conference (CARV2021) and the 10th World
Mass Customization & Personalization Conference
(MCPC2021), Aalborg, Denmark, October/November
2021. Springer International Publishing. pp. 669-676.
DOI: 10.1007/978-3-030-90700-6_76

Myung, S., & Han, S. (2001). Knowledge-based
parametric design of mechanical products based on
configuration design method. Expert Systems with
applications, 21 (2), 99-107. DOI: 10.1016/S0957-
4174(01)00030-6

Ortner-Pichler, A., & Landschützer, C. (2022).
Integration of parametric modeling in web-based
knowledge-based engineering applications. Advanced
Engineering Informatics, 51, 101492. DOI:
10.1016/j.aei.2021.101492

124

Oxman, R. (2017). Thinking difference: Theories and
models of parametric design thinking. Design studies,
52, 4-39. DOI: 10.1016/j.destud.2017.06.001

Peffers, K., Tuunanen, T., Rothenberger, M. A., &
Chatterjee, S. (2007). A design science research
methodology for information systems research. Journal
of management information systems, 24 (3), 45-77. DOI:
10.2753/MIS0742-1222240302

Peng, C., & Ridgway, K. (1993). Integration of
CAD/CAM and spreadsheet data processing. Integrated
Manufacturing Systems, 4 (4), 29-36. DOI:
10.1108/09576069310044646

Plappert, S., Gembarski, P.C., Lachmayer, R. (2020).
The Use of Knowledge-Based Engineering Systems and
Artificial Intelligence in Product Development: A
Snapshot. In: Świątek, J., Borzemski, L., Wilimowska,
Z. (eds) Information Systems Architecture and
Technology: Proceedings of 40th Anniversary
International Conference on Information Systems
Architecture and Technology – ISAT 2019. Advances in
Intelligent Systems and Computing, vol 1051. Springer,
Cham. DOI: 10.1007/978-3-030-30604-5_6

Poot, L.P., Wehlin, C., Tarkian, M., & Ölvander, J.
(2020). Integrating sales and design: applying CAD
configurators in the product development process. In:
Proceedings of the Design Society: DESIGN Conference.
1, 345-354. DOI: 10.1017/dsd.2020.129

Queiroz, N., Dantas, N., Nome, C., & Vaz, C. (2015,
November). Designing a Building envelope using
parametric and algorithmic processes. In Proceedings of
the 19th Conference of the Iberoamerican Society of
Digital Graphics, pp. 797-801.

Raffaeli, R., & Germani, M. (2010). Knowledge-based
approach to flexible part design. Journal of Engineering
Design, 21 (1), 7-29. DOI: 10.1080/09544820802086996

Skarka, W. (2007). Application of MOKA methodology
in generative model creation using CATIA. Engineering
Applications of Artificial Intelligence, 20 (5), 677-690.
DOI: 10.1016/j.engappai.2006.11.019

Tedeschi, A., & Lombardi, D. (2018). The algorithms-
aided design (AAD). Informed Architecture:
Computational Strategies in Architectural Design, 33-38.
DOI: 10.1007/978-3-319-53135-9_4

Verein Deutscher Ingenieure. (2009) VDI 2209:2009. 3D
product modeling - Technical and organizational
requirements - Procedures, tools, and applications -
Cost-effective practical use. Berlin, Beuth.

Verhagen, W.J., Bermell-Garcia, P., Van Dijk, R.E., &
Curran, R. (2012). A critical review of Knowledge-
Based Engineering: An identification of research
challenges. Advanced Engineering Informatics, 26 (1), 5-
15. DOI: 10.1016/j.aei.2011.06.004

Zboinska, M.A. (2015). Hybrid CAD/E platform
supporting exploratory architectural design. Computer-
Aided Design, 59, 64-84. DOI:
10.1016/j.cad.2014.08.029

Zhang, L.L. (2014). Product configuration: a review of
the state-of-the-art and future research. International
Journal of Production Research, 52 (21), 6381-6398.
DOI: 10.1080/00207543.2014.942012

Zuo, W., Chen, M.T., Chen, Y., Zhao, O., Cheng, B., &
Zhao, J. (2023). Additive manufacturing oriented
parametric topology optimization design and numerical
analysis of steel joints in gridshell structures. Thin-
Walled Structures, 188, 110817. DOI:
10.1016/j.tws.2023.110817

CORRESPONDENCE

Dr.-Ing. Paul Christoph Gembarski
Institute of Product Development,
Leibniz Universität Hannover,
An der Universität 1
30823 Garbsen, Germany
gembarski@ipeg.uni-hannover.de
Bilal Ibrahimi
Institute of Product Development,
Leibniz Universität Hannover,
An der Universität 1
30823 Garbsen, Germany
bilal.ibrahimi@stud.uni-

hannover.de

Nikolas Plett
Institute of Product Development,
Leibniz Universität Hannover,
An der Universität 1
30823 Garbsen, Germany
nikolas.plett@stud.uni-hannover.de

Maxim Stötzer
Institute of Product Development,
Leibniz Universität Hannover,
An der Universität 1
30823 Garbsen, Germany
maxim.stoetzer@stud.uni-

hannover.de

125

