
Abstract: To enable product customization, validating 
the design solution spaces is necessary to ensure safe
manufacturing and operation. Implementing product 
models with component families to choose from serves as 
a basis for tools such as product configurators. Today, 
advancements in production technology, digital 
functionalities of products, and emerging capabilities of 
business ecosystems result in additional possibilities to 
adapt products and services to customer needs. This has 
consequences for solution space models, i.e., the 
inclusion of corresponding degrees of freedom. This 
article seeks to align this with research on solution space 
development in the fields of action knowledge-based 
design and design automation, design for adaptive-
cognitive manufacturing, and (re-)configuration of 
business ecosystems and to motivate prospective 
research avenues focussing on AI-based engineering 
tools for solution space development.
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1. INTRODUCTION
Adapting products and services to customer needs

requires a high degree of validation to ensure that a 
variant can be manufactured and operated safely (Dong 
et al., 2023; Zimmermann & von Hoessle, 2013).
Complexity management is of particular importance here
to deal not only with variety but also with uncertainties 
that arise (Pavanelli Stefanovitz & Lopes de Sousa 
Jabbour, 2022;  Gembarski & Lachmayer, 2017).
Complex product portfolios contain myriads of different 
variants due to their product structure, i.e., well-designed 
modules and interfaces and various options that can be 
chosen by the customer (Modrak & Bednar, 2016; 
Durhuus & Eilers, 2014; Pil & Holweg, 2004). Defining 
the underlying solution space and maintaining it over 
time is the goal of solution space development 
(Gembarski & Lachmayer, 2018; Brunø et al., 2014). 

The implementation of the corresponding product 
models has been supported by artificial intelligence (AI)-
based engineering tools right from the beginning 
(Verhagen et al., 2012; Sabin & Weigel, 1998). Looking 

back into the history of product configuration, it was 
1982 when McDermott (1982) published his work about 
R1/XCON, the first documented configurator in 
literature. It was a rule-based expert system implemented 
in OPS5 that was online for nearly ten years, finally 
describing over 31,000 configurable components and 
over 17,500 rules, from which nearly 50% needed to be 
maintained and adopted per year (Barker et al., 1989). 
Fig. 1 shows an example rule from R1/XCON which 
illustrates the nesting of the conditional part of the rules.

Fig. 1. Rule from R1/XCON  (McDermott, 1982)

R1/XCON perfectly shows the working principle of 
early solution space models: The first key feature was the 
development of a product model that coded component 
families as variables and the single options for a 
component as their domains (Simpson et al., 2014; Tseng 
et al., 1996). A second key feature was integrating expert 
system techniques to reason from user requirements to 
product characteristics and to configure the right 
components from these domains (Zhang, 2014; Forza & 
Salvador, 2002). 

Today, determining the right components is still 
relevant for many products, even when expert system 
technologies developed over time (Felfernig et al., 2014; 
Hvam et al., 2008). But it is yet not the only way to adapt 
products and services to customer needs. Modern 
manufacturing technologies, the virtual capabilities of 
smart connected products, and the different ways of 
operating products in multiple services require new 
capabilities in solution space development.

This article seeks to align the different ways of 
product adaptation and research on the respecting 
solution space models and the necessary AI-based 
engineering systems to model and explore them. To do 
so, the following section 2 introduces the term degree of 
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freedom in the context of solution space models and 
deduces different types based on different ways of 
product adaptation. Section 3 then takes the bird’s eye 
view by applying a systems engineering approach to
adaptive products and services and linking them to the 
supply chain and the environment in which these 
products and services are applied. The resulting mental 
model motivates three fields of action which are 
discussed in section 4 regarding AI-based engineering 
systems for creating the respecting solution space 
models. For these fields of action, current research and 
future avenues are framed. Section 5 then contains a 
summary.

2. PRODUCT ADAPTATION IN THE YEAR 2024
As mentioned above, adapting products by 

exchanging components is a common practice. From a 
modeling point of view, the innovation of the early 
solution space models like the one from R1/XCON lies 
in the introduction of variables and their domains as 
representatives for component families. The consequence 
is a compositional degree of freedom in the product 
models (and products themselves), i.e. the necessity to 
correctly assign a distinct component from a set of 
(given) alternative components respecting constraints 
due to requirements and engineering intent. 

The following sub-sections introduce other ways of 
product adaptation and discuss them regarding further 
degrees of freedom necessary for solution space models.

2.1. Design degree of freedom

Regarding the physical components of a product, 
another way of adaptation is changing the design of a 
component in the sense of dimensions and design 
features (Gembarski & Lachmayer, 2018; Chen & Shea, 
2015). This is enabled due to advances in production 
technologies, especially manufacturing systems for 
producing at lot size one.

Depending on perspective and maturity, flexible, 
reconfigurable, cyber-physical, and smart manufacturing
systems are discussed in literature among others. The 
principles behind this include the (automatic) 
configuration of a process chain based on geometric data, 
scheduling and routing the production order through the 
system, and monitoring production quality (Romero & 
Stahre, 2021; Leng et al., 2021; Yelles-Chaouche et al., 
2021). In adaptive cognitive manufacturing systems 
(ACMS), the increased sensing of the production 
machinery will raise the level of automation and make 
them more robust to achieve the desired product 
properties and reduce waste and rejects. All information 
processed and all decisions taken by the system are 
stored in a comprehensible manner so that human 
operators can easily follow them and are supported in 
their day-to-day work in the most efficient way (Zhang et 
al., 2023; ElMaraghy et al., 2021).

As a special building block in such process chains, 
additive manufacturing enables to create a physical part 
directly from the geometric model by powder-bed or 
metal deposition processes, usually without the necessity 
for additional tooling (Abdulhameed et al., 2019; Frazier, 
2014). Although explicitly not the game changer in 

customization due to its costs and scattering regarding 
product properties, the ability to produce complex 
geometries and reach functional integration makes it 
attractive for many applications, including repair and 
refurbishment (Ehlers et al., 2022; Ganter et al., 2021; 
Gibson et al., 2021; Thompson et al., 2016). 

As a consequence, the solution space models need to 
include a design degree of freedom, i.e., the necessity to 
determine a parameter for dimensions or feature 
occurrences that do not violate manufacturing 
restrictions, aesthetic principles, or other constraints 
(Gembarski & Lachmayer, 2018; Gembarski & 
Lachmayer, 2015).

Fig. 2. Design degree of freedom: a) Free-form 
bookshelf, b) Additively repaired structural component, 

c) Personalized book

Fig. 2 shows three examples of products with design 
degrees of freedom from subtractive, additive, and print 
manufacturing. The first example is personalized 
furniture such as free-formed bookshelves, which are 
distributed in the Okinlab form.bar ecosystem. A digital 
platform hosts an advanced configuration system that 
enables customers not only to choose from options but 
make adaptions to the design of parts and assemblies. 
When the order is completed, the digital production data 
set is transmitted to a manufacturer near the customer 
who has the corresponding CNC manufacturing 
equipment and is then produced and distributed to the 
customer (Scheer, 2019; Quaranta & Feth, 2017).

The second example is the rarely available spare part 
for the steering knuckle of a historic tractor. The original 
part was broken but could be repaired using additive 
manufacturing. The necessary preprocessing of the 
broken part and the manufacturing restrictions due to the 
process chain were both generated by a knowledge-based 
engineering system as a model of the corresponding 
(generalized) solution space. The knuckle was digitally 
reconstructed, repaired by metal powder-bed fusion, and 
then post-processed by subtractive manufacturing to 
achieve the necessary tolerances (Ganter et al., 2022; 
Gembarski & Kammler, 2022).

The third example originates from digital printing. 
The idea to customize print material to generate 
additional customer touch points for mass customization 
businesses is rather old (Müller & Piller, 2004; Kotha, 
1995). Real customer co-creation takes place using 
digital platforms for creating, e.g., personalized photo 
books (Engel et al., 2015). These platforms usually offer 
templates and perform checks and optimizations to 
guarantee a good printing result (Corrigan-Kavanagh et 
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al., 2023; Sandhaus et al., 2008). A relatively new 
development is letting customers adapt the content of 
books to their characters or create personalized 
packaging (Kucirkova & Mackey, 2020; Zhou et al., 
2013).

2.2. Digital degree of freedom

The digital capabilities of smart connected physical 
products enable product adaptation in a different way
(Raff et al., 2020; Porter & Heppelmann, 2014). The 
integration of a digital layer in complex products is 
rather not a new development. Monitoring, adapting, and 
optimizing, e.g., production machinery to environmental 
or usage conditions via its control units is essential in 
many businesses (Beverungen et al., 2019; Salvador et 
al., 2009). But the ongoing merger of hardware and 
software leads to new real-time applications and 
decision-support in human-machine collaboration 
(Wilhelm et al., 2021; Romero et al, 2020). A huge 
potential results from making physical changes to the 
product obsolete by reconfiguring virtually (Abramovici 
et al., 2017; Brettel et al., 2014).

The consequence for solution space models is a 
virtual degree of freedom, i.e., the necessity to determine 
digital functionality that does not violate the limitations 
of the physical capabilities of the (smart) product and the 
flow and processing of data (Gembarski, 2020).

Fig. 3. Digital capabilities of a modern vehicle headlamp

An example of this is a modern vehicle headlamp.
Digitally controlled light sources largely decouple light 
distribution and lens geometry. In such a way, traffic 
signs or visual communication between the car and other 
traffic users can be realized (Fig. 3). As a consequence, 
the system is robust against changes in traffic 
regulations: If a new light distribution for, e.g., the low 
beam is negotiated, such a headlamp simply needs new 
input data (Knöchelmann et al., 2018; Hung et al., 2010).

The reconfiguration of a (smart) adaptable product is 
commonly based on data, independently from being 
sensed by the product or input by others. Thereby the 
product and the service state requirements for the quality 
of the data which needs to be considered during product 
development (Batista et al., 2005). 

Another question is what additional benefit can be 
achieved by the data, e.g., in other related services. 
Referring again to the automotive sector, active 
suspension integrates, e.g., camera vision of the road in 
front of a car to detect potholes with adaptive shock 
absorbers (Tseng & Hrovat, 2015; Gysen et al., 2009). 

The car usually also has a GPS module so that the 
controller signal of the suspension intervention can be 
combined with the location of the car (Kim et al., 2022; 
Eriksson et al., 2008). This enables two additional 
services: First, the real-time data about the condition of 
the roadway surface enables road construction state 
prediction and planning on-demand maintenance. 
Second, car owners without active suspension can opt for 
the most comfortable and, regarding the car, most careful 
route for driving.

2.3. Operation degree of freedom

Understanding products as resources to achieve 
added value sets a different focus on its purpose. Current 
research in the field of circular economies advocates 
integrating the 9R strategies into development processes 
(Muñoz et al., 2024). Although many of the single Rs, 
such as reuse, repair, remanufacture, and recycle should 
be common practice, especially repurposing is 
challenging as it requires a different view rather than the 
functional and build-structure of the product. The 
question moves to what capabilities are achieved by a 
product and to which other use cases are these 
capabilities beneficial (Chen et al., 2022).

A single product or service can be seen as part of a 
super system. All of its products and services, their 
capabilities, and their emergent features due to their 
combination form a different type of solution space and 
introduce an operation degree of freedom, i.e., the 
necessity to determine the product usage in the context of 
multiple services that does not violate capability as well 
as resource allocation and consumption constraints
(Gembarski & Kammler, 2022).

Fig. 4. Repurposing of a cargo e-bike

Fig. 4 shows a simple example of this. An electrical 
cargo bike offers the capability to move forward cargo 
up to a specific weight according to traffic regulations in 
a supported way so that the power of the rider is raised. 
A manually operated lawn mower offers the capability of 
cutting the lawn when it is moved forward. What now if 
both are merged? First of all, new requirements for the e-
bike appear, especially regarding stability and energy 
support. 

To anticipate such requirements during product 
development is particularly challenging but essential for 
(smart) product-service systems and business ecosystems 
(Bulut & Anderl, 2022; Wang et al., 2019).
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3. MENTAL MODEL
A traditional view on solution space development is 

modeling the design solution space and the way it is 
explored to get from customer needs to a respecting 
product or service configuration. Adding the time 
dimension to this, products and services can also be re-
configured over time, adapting them to changed 
requirements and conditions. For this reason, a 
configurable product or service can be understood as an 
adaptive system.

From a systems engineering perspective, besides the 
system structure, the interaction between a system and its
environment is of particular interest. Following the 
above logic, a mental model can be developed to 
describe elements, relations, and engineering activities in 
solution space development (Fig. 3). 

At the center is the adaptive system. As mentioned 
before, adapting it can encompass changes on three 
different layers. Firstly, on the physical layer, this can 
involve the replacement or modification of physical 
components to accommodate new requirements. 
Secondly, on the digital layer, the product's operation can 
be adjusted by changing its behavior, integrating new 
digital controls, or incorporating additional digital 
functionality. Finally, on a service level, the physical 
product can be embedded into a new service, involving 
the integration of support services, maintenance, or other 
value-added features. 

The adaptive system itself is an instantiation out of a 
design solution space that incorporates all feasible 
configurations of the adaptive system. Both are related to 
each other. Adaptive systems are designed to flexibly 
adjust and respond to changing requirements, ensuring 
ongoing functionality and performance in evolving 
conditions. In such a way, the change in requirements 
triggers a request to adapt the system. On the other side, 
the design solution space ensures that the (re-)
configuration is valid, either by an instant evaluation or
based on an already pre-designed reaction pool for 
certain change requests.

If the design solution space is incapable of 
reconfiguring the adaptive system according to the 
requirements, the system can request or propose an 

extension on physical, digital, or service level that can 
be, e.g., engineered to order.

The design solution space itself is an instantiation of 
the collective capabilities of a set of organizations. These 
capabilities contribute to the creation of a supply system 
solution space, which plays a crucial role in ensuring the 
production and operation of viable variants within safe 
parameters. As a result, the supply system solution space 
acts as a restriction, allowing only feasible variants to be 
included in the design solution space. If the design 
solution space ought to be extended, this can create new 
demands for capabilities in the supply system. 

On the other hand, the adaptive system is operated in 
a dynamic environment with the consequence of a 
continuous influx of new or modified requirements that 
the system must accommodate and trigger its adaptation. 
The adaptive system also provides feedback to the 
environment through its various interfaces, actively 
contributing to and influencing its dynamics. As a result 
of this interaction, new requirements and use cases are 
continually identified and developed, creating a cyclical 
pattern of ongoing evolution and improvement that is 
constantly served from the design solution space.

The mental model incorporates three engineering 
processes at the interfaces between its elements that can 
be seen as fields of action for solution space 
development research.  

The first between adaptive system and design 
solution space largely includes all activities that allow 
for reasoning from requirements to a (new) variant of the 
adaptive system. This field of action aligns with
knowledge-based design and design automation. The 
second between design solution space and supply system 
solution space involves all activities to automatically 
check variants for manufacturability and operability as 
well as the support and organization of manufacturing 
processes. This field of action focuses on design for 
adaptive-cognitive manufacturing. The third integrates 
the adaptive system and the dynamic environment, 
shifting the viewpoint on the capabilities the system 
contributes to the environment as a super system and its 
purpose. That field of action is business ecosystems 
engineering. 

Fig. 5. Mental model for solution space development
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4. FIELDS OF ACTION
Following a knowledge-based systems engineering 

paradigm, AI-based engineering tools need to support the 
above activities and model the corresponding solution 
spaces. 

In the following sub-sections, the present research 
background is showcased based on (meta) reviews from 
the corresponding domains. These are enhanced by 
actual relevant works about AI-supported engineering 
tools. From this, a main research avenue is framed and 
detailed into guiding questions for future works in each
field.

4.1. Knowledge-based design 

Knowledge-based design involves a paradigm shift in 
computer-aided product modeling. The focus switches 
from modeling single product variants to whole solution 
spaces where a variant can be derived based on a set of 
requirements (Frank et al., 2014; Amadori et al., 2012).
This involves two activities, first to develop product 
models that represent the solution space and second 
methods to explore it and reason to the target variant 
(Gembarski & Lachmayer, 2018).

The literature contains various reviews on the topic.
Kuegler et al. (2023) performed a meta-review and 
enhanced this with findings from their own review 
targeting the period between 2012 and 2021. The 
conclusions can be summarized as follows:

Methodological support and theoretic foundations 
are still missing to a big extent,
Reported systems lack detailed descriptions 
regarding knowledge bases and are often isolated 
implementations for a specific use case,
Knowledge re-use is hardly assessed for the 
reported systems,
The discussion of AI techniques, both symbolic 
and sub-symbolic, is underweighted.

From a modeling principle perspective, knowledge-
based computational design has different forms. 
Knowledge-based CAD makes use of today’s parametric 
CAD systems and integrates design intent by, e.g., 
mathematical constraints, design rules, and AI with a 
strong focus on expert system techniques (Gembarski & 
Lachmayer, 2018; Hirz et al., 2013). 

Algorithmic modeling puts the focus on automating 
the design process itself rather than pre-formulated 
solutions (Tedeschi & Lombardi, 2018). Algorithms are 
used to extract product properties from requirements and 
build product design rules, also taking into account 
external data or numerical simulations (Brockmöller et 
al., 2020). Therefore, a parametric product master model 
is unnecessary as this approach aims to generate an 
individual product for each set of customer requirements.
This is particularly favorable for complex geometries
(Müller et al., 2022).

However, algorithmic modeling is defined by a 
correlation between the algorithm and the outcome. Thus 
literature discusses this as a special case of generative 
modeling, where this correlation is not immanent 
(Caetano et al., 2020). The workflow is the same and so 

are the engineering environments. Today, the design 
process is commonly modeled in visual programming 
tools, such as Rhino Grasshopper and Synera. The idea 
behind this is to enclose functional blocks like geometric 
features or optimization procedures in nodes which can 
be linked with each other and with input variables and 
restrictions. The workflow then executes the node 
network to generate the design (Boretti et al., 2023). This 
includes also the specification of geometric drafts as 
input whereupon the system automatically elaborates it, 
evaluates alternatives, and thus enables qualified degrees 
of freedom in the design. Since these technologies are 
still comparatively young, there is only little scientific 
literature reporting about this or giving methodological 
guidance. 

The potential of AI to formalize design requirements 
and restrictions, e.g. based on mass data is seen (Gräßler 
et al., 2023). The actual burst of research on generative 
AI has reached the design tools only to a small extent. 

In conclusion, the main research avenue of this field 
of action is to rethink knowledge-based design as a 
model of the design solution space and to implement it as 
a task-specific combination of intelligent tools within 
algorithmic and parametric modeling. Research 
questions include:

What are the underlying algorithmic formulations 
of design problems and generalized solving 
methods for them? 
What are suitable data structures and methods for 
automated derivation of domain knowledge for 
subsequent storage and application in engineering
environments, e.g. based on graph-based product 
representations or through generative AI 
processes?
How to evaluate and optimize designs multi-
perspectively (e.g. concerning functional 
fulfillment, manufacturability/tolerances, eco-
efficiency) in engineering environments 
automatically, e.g. using AI in the form of multi-
agent systems and distributed CSP?
How to complement generative AI with expert 
system technologies and vice-versa and integrate 
them into computational design?

4.2. Design for adaptive-cognitive manufacturing

In the future, engineering tools will perform design 
tasks under human guidance. The aforementioned 
principles and tools for algorithmic modeling offer 
multiple potentials also for the design for manufacturing 
in general (Brockmöller et al., 2020). This includes the 
question of how to integrate manufacturing analysis
systems to close the gap between design and production.
These systems go beyond a simple comparison of 
production restrictions in the form of rules and equations. 

Research on that topic is still characterized by a 
strong emphasis on the single production technologies. 
Since products are usually manufactured by a process 
chain, the cross-process manufacturing restrictions are 
hard to capture and thus under-represented in the 
literature (Beckers et al., 2022).    

Reviews such as from Shukor & Axinte (2009) point 
out, that a complete geometric model, including all 
tolerance and material data, is highly beneficial as input 
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for such systems. Nonetheless, the relation between 
functional and manufacturing domains is only considered 
to a small extent. The analysis systems themselves 
commonly rely on expert system techniques or multi-
agent systems (Plappert et al., 2021)

A relatively new development is the algorithmic 
formulation of the manufacturability analysis as such. An
example approach is the portfolio-of-capabilities-
constraint-network (Herrmann et al, 2023). The 
geometry of a part is abstracted into its dimensions and 
correlated with discretized manufacturing restrictions in 
a constraint satisfaction problem. The advantage of the 
approach is that cross-process constraints can be easily 
included, manufacturing stages can be considered and
partly derived, and manufacturing conflicts can be traced 
and partly resolved automatically. For larger 
manufacturing chains, the approach is computationally 
intensive.

An engineering system that takes over both the 
evaluation of product variants and the control of the 
manufacturing process can react automatically to 
deviations and guarantee product safety by generating 
alternative solutions. One example of this is the 
compensation of a production deviation by adapting 
adjacent components if these have been provided with 
the appropriate degrees of freedom in the design.

Following this, the main research avenue of this field 
of action is the development of methods and models for 
manufacturability analyses based on the supply chain 
solution space and advancing them into multi-
perspective optimizers that interact with the design
solution space. This leads to questions such as:

How to operationalize production-specific 
heuristics and design guidelines/design-for-X
approaches through algorithmic formulation and 
synthesis of tools for automated testing and 
optimization of product models, e.g. in the 
context of automated design reviews by multi-
agent systems?
How to model manufacturing capabilities and 
automated configuration of manufacturing 
process chains, e.g. as a Portfolio-of-Capabilities 
Constraint Networks, and how to resolve 
occurring manufacturability conflicts 
automatically?
How to integrate concepts for the digital twin of 
production with design solution spaces and 
methods for formulating reaction plans and 
according to degrees of freedom in product 
models to compensate for production deviations?

4.3. (Re-)Configuration of business ecosystems

The research field of business ecosystems is still 
comparatively young (Tsujimoto et al., 2018). It has a 
strong focus on the mechanics within the ecosystem
itself, i.e., mediating between the interests of the 
participants and decision-making principles. Many works 
emphasize the evolutionary nature of ecosystems as 
highly dynamic entities which leads to the question if 
ecosystems as a whole can be actively designed (Cobben 
et al., 2022). The literature discusses two views on that: 
Actor-centric views prioritize network partner 
composition and their respective roles in the ecosystem. 

This perspective assumes that a business designs an 
ecosystem from the top down by adding complementors 
to enhance capabilities. On the other hand, activity-
centric views focus on organizing activities among 
partners to create a valuable offering (Adner, 2017), thus 
reflecting a bottom-up approach where portfolios of 
capabilities are designed before configuring solutions for 
customers individually.

From a methodology point of view, approaches from 
other engineering disciplines have already been adapted 
as design concepts. To those belong modularity, 
complementarity, and fungibility, which can be sub-
summed as design for flexibility or design for 
(re-)configuration of the ecosystem (Jacobides et al., 
2018). Rong et al. (2015) visualize this in the example of 
well-designed map services with an open application 
programming interface: The system can be utilized in 
delivery services by providing essential features such as 
finding destinations and establishing the most efficient 
routes. In combination with tracking, this allows for real-
time monitoring of vehicles and predicting arrival times 
for individual customers and creates emergent 
functionality for the service. The question arises of how 
to support the co-evolution of such emerging functions 
and the definition of cross-ecosystem solution spaces 
with corresponding degrees of freedom (esp. 
compositional, virtual, and operational as in the example 
above) to adapt to individual customer needs and taking 
advantage of the complex reaction pool that the 
ecosystem holds. However, deployment typically 
requires a transparent description of functions contained 
within the reaction pool as well as their interoperability.
To apply this also for managing customer solutions in 
real-time, modeling the solution space of ecosystem 
offerings and their single customer instantiations is 
imperative but lacks foundational research. At present, 
there are no computer-aided tools that support the design 
and management of ecosystems.

Following this, the main research avenue of this field 
of action is to understand business ecosystems as new 
design objects, which can be developed with 
methodologies and tools from engineering disciplines. 
Research opportunities that align with this are:

Which are (standardized) model elements for 
designing ecosystems and what are configuration 
mechanics and generalized examples for that?
How to model solution spaces for an ecosystem’s 
offerings and in particular how to capture 
emerging features at the interaction of ecosystem 
participants?
How to synchronize this with theories from the 
field of strategic alliances, e.g., resource- or 
knowledge-based theory?
Which system engineering methodologies and AI-
based engineering tools can be transferred to
ecosystems?

5. SUMMARY
Digital tools and AI-based engineering environments

currently change working paradigms, shifting the 
development focus from single variants to solution 
spaces from which individual customer needs can be 
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served. A key aspect here is the introduction of defined 
degrees of freedom in the product models, ensuring that 
newly configured variants are valid and can be operated 
safely. Due to technological advancement, four of such 
degrees of freedom could be identified, i.e., 
compositional, design, digital, and operational.

A system engineering approach that puts adaptive 
systems of products and services in the center then 
integrates the design solution space as the basis for (re-)
configuration, the supply system solution space as a
source of restrictions for the design solution space, and a
dynamic environment as a super system of multiple 
adaptive systems as capabilities and resources of an 
ecosystem. Each interface of the single elements of this 
mental model leads to an engineering process behind, 
i.e., knowledge-based design and design automation,
design for adaptive-cognitive manufacturing, and 
business ecosystems engineering. These engineering 
activities form fields of action for solution space 
development research, for which research avenues and 
guiding questions were proposed with a focus on AI-
based engineering tools.

In this context, AI-based technologies will leverage 
efficiency not only for a configuration of adaptive 
systems in complex and huge solution spaces like those 
from business ecosystems. Techniques from algorithmic 
engineering and new generative AI tools will also 
increase the ability to model the solution spaces as such.
Emphasizing the holistic nature of solution spaces as 
design objects, this work should explicitly motivate 
research towards a theory of solution space engineering.
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