
Abstract: Generative design suggestions and topology 
optimizations can help to reduce iterative process loops 
between calculation and design departments during 
product development processes. However, precise 
topology optimizations are computationally intensive, 
while generative designs benefit from swift suggestions 
to address design problems efficiently. Using artificial 
neural networks (ANN) can address this contrast of pre-
defined aims by predicting topology-optimized designs, 
thereby combining both advantageous features. 
However, a challenge in Mass Customization is, that 
ANN are usually trained on specific geometries, making 
transfer to other applications impractical or requiring 
the creation of new datasets, which is economically 
unfeasible. Authors have already demonstrated a 
solution in other publications: dividing a geometry into 
geometric primitives like cuboids to perform abstraction. 
An ANN can then be trained to recognize optimized 
cuboids, which can be assembled back into a complete 
geometry, comparable to the finite element methods, 
which divide geometries of parts in finite elements 
enable mechanical property calculation. This publication 
aims to illustrate the steps of the approach in which the 
complete geometry of a part is segmented into these 
primitives, and the benefits obtained. Various methods 
will be explored, including automated workflows on 
modern low-code platforms, to enable generalized use.
Key Words: Generative design; Topology optimization; 
Artificial neural networks; Product design; Product 
development

1. INTRODUCTION
The desire for individuality and the need to 

distinguish oneself from others is inherent in human 
nature and therefore of essential importance. At the same 
time, given today's production volumes, it is a 
tremendous technical challenge to meet this desire for 
individuality within the constraints of quality, cost, and 
especially time, which necessitates a shift in technical 

thinking (Pfeifer, 2015). A high variety of options must 
be tailored to the needs of the consumer while still 
ensuring profitability. Simultaneously, sustainability 
issues are ever-present, requiring a more conscious use 
of existing resources in the form of efficient lightweight 
construction (Kupfer, 2022). It is precisely in this context 
that structural optimization comes into play, which is 
typically carried out in existing development processes 
by specialized, and thus limited and costly, personnel. In 
terms of mass customization this means, that for 
individual light weight products, structrual optimization 
needs to be much more efficient to meet the goal of 
effortable costs. Therefore, to ensure economic viability, 
these processes must be rethought and optimized
(Georgiev, 2011; Zwettler, 2019).

In addition to sustainability, reports on artificial 
intelligence and its applications are another driver of 
modern visions, aimed at making human work more 
efficient or even replacing it altogether (Scheuer, 2023).
Thus, it can therefore be inferred that the combination of 
utilizing artificial intelligence in structural optimization 
is indispensable for meeting the modern challenges in 
individualized product development.

2. PROBLEM DESCRIPTION
Ensuring the mentioned sustainability through 

efficient lightweight construction in times of increased 
individualization is only possible if design processes are 
automated or simplified to the extent that it becomes 
economically feasible to design a wide variety of 
products take into account the aforementioned factors. 
Paying attention to lightweight construction and possibly 
even carrying out initial calculations or structural 
optimizations in the early phases of product 
development, thus in the concept phase, appears 
unmanageable in many parts of companies (Zwettler,
2019).

To automate such processes, artificial neural 
networks (ANN) can be employed, which, mostly require 
very data-intensive applications. Not least, this presents 
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opportunities, which, based on various statistics, lead to 
improvements in product quality and process 
optimization. However, some surveys also reveal several 
hurdles. As shown in (Deloitte, 2023), in addition to the 
lack of competence and implementation challenges, data 
problems are a significant factor. 

The latter issue of data problems is gaining increasing 
influence, particularly in fringe areas of applications, 
including in the context of structural optimization. An
ANN requires a training dataset to perform tasks such as 
prediction, analysis, and clustering. This dataset is used 
to teach the ANN which input leads to which output. 
Large amounts of data are needed for this purpose, 
which, depending on the training method, must already 
be labeled or may be available in raw, unorganized form
(Industrial-AI, 2021).

Various approaches to addressing these problems 
exist in the literature. On the one hand, ANNs can be 
used to generate numerical predictions for solving a 
mathematical matrix or to accelerate the corresponding 
algorithms. On the other hand, direct geometric elements 
can also be predicted. Depending on the objective, large 
datasets of various structurally optimized geometries are 
necessary to teach the ANN how the corresponding 
output should look under different assumptions
(Woldseth, 2022).

3. PREWORK AND METHODICAL APPROACH
Based on the explained problem, it is of great importance 
to integrate ANNs and their possibilities to accelerate 
processes into structural optimization. This has the 
advantage that ANNs learn what structurally optimized 
geometries look like. Ideally, a network only needs to be 
trained once in order to be able to predict the subsequent 
optimizations. However, difficulties are to be expected 
when transferring to different geometries, as in (Ott et 
al., 2022) have already shown, which is why a method 
was developed that enables the generic use of a prepared 
data set through the geometric abstraction of a complex 
geometry by primitive geometries (Ott et al., 2023). This 
method is shown in figure 1. The method distinguishes 
between three areas: the one-off preliminary work to 
train the ANN, the methodical steps to automatically 
build the simplified optimization model and the 
subsequent merging of the previously optimized 
primitives into an overall geometry. By abstracting the 
overall geometry, the data set can initially consist of 
geometric primitives, which in the proof of concept are 
cuboids. These are stored in the dataset in various 
dimensions with various loads and their corresponding 
optimizations. The methodical steps for building the 
model first break down the overall geometry into the 
individual primitives. This step is marked with an arrow 
in the figure. More details about this building block and 
how it was implemented are described next. The reaction 
forces are then calculated for the primitives created and 
the individual optimization models are built up. 
However, only the first iteration needs to be calculated 
here; the fully optimized primitives are then predicted by 
an ANN trained on the dataset. In the final phase, the 
individual primitives are then linked by interfaces to 
form an overall geometry.

Fig. 1. Prework methodical approach for AI-assisted 
optimisation

4. SEGMENTATION TO PRIMITIVES
Segmenting the existing geometry into individual 

primitives abstracts a specific part into generalized equal 
segments This problem of generalization is not only
significant in this application but can be found in nearly 
every industrial application. For example, parts and 
assemblies are often developed using a modular system 
(such as in the automotive industry) to use as many 
identical segments as possible and minimize the 
production and development of unique parts, as this 
would greatly increase the effort. Analogies can be 
drawn to the developed approach, where primitives are 
seen as components of this modular system, optimized 
and reassembled by an ANN. Since the method should 
be as automated as possible, ANN can be considered to 
directly handle the segmentation into primitives. Another 
way to achieve this is by defining a rule-based algorithm 
that examines existing geometry for potential primitives 
and creates them when the rule dictates. Therefore, these 
two approaches and the experiments and results 
conducted within this framework are explained to 
support decision-making.
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4.1. Segmentation via neural networks

Selecting the ANNs for segmenting geometric 
primitives in the application case described in this study 
is limited by several constraints. The criteria include the 
CSG (Constructive Solid Geometry) basis and the 
outcome as a composite geometry made up of primitives.

The CSG approach, which is already successfully 
used for many years, describes a form of representation 
that essentially consists of generating a geometry using 
boolean operations on basic solids (spheres, cones, 
cylinders, rectangular solids, etc.). One of the greatest 
advantages here is that the entire history of how a 
geometry is created is stored in a logic process, which 
makes it possible to implement changes to the model 
very effectively. In today's CAD systems, however, this 
representation method is only rarely used, but the 
principle of the modelling method remains the same and 
is represented in the figure below (Agoston, 2005; Fraß,
2009; Watt, 2002).)

Fig. 2. Representation of CSG concept

Initially, an approach, which is based on former 
described CSG technique, published by (Ren et al., 2021)
was examined. In summary, this approach attempts to 
convert a CAD input, represented as a point cloud, from 
a high-hierarchy CSG tree into a low-hierarchy CSG tree 
to ultimately remodel the geometry more effectively than 
traditional methods. However, this approach focuses on 
accurately and effectively remodeling the original 
geometry, while the presented work needs to focus on 
creation, subsequent access, and subdivision into 
primitives, which is not guaranteed in (Ren et al., 2021).
Additionally, the presented in chapter 3 methodical 
approach is based on voxel model representation, which 
would implement an additional step of convertation from 
point clouds to voxels.

The wanted approach should be one, which only 
predicts the primitives that it finds in an existing 
geometry, without saving the corresponding CSG tree, so 
that only the primitives form the output and can be 
accessed. It is not expedient for this elaboration if the 
primitives are linked again at the end to form an overall 
structure without being able to access the intermediate 
steps, because this is precisely the point at which the 
generalisation of the geometry makes it possible to use a 

data set of the selected network for optimisation in a 
generic way.

(Yang et al., 2021) published a network architecture, 
which only tries to represent the given point cloud input 
in single surface mesh-based primitives. Point cloud 
segmentation does not matter much here, but 
simultaneously generated primitives do. The mesh learns 
the parameters of the primitives that it places over the 
point clouds without being monitored and can change 
these in order to represent the actual geometry more 
accurately. The scaling, rotation and transformation 
matrix are used for this purpose. In this approach, the 
primitives to be used must be specified and also an 
approximate number of them. The learning process was 
restricted for the investigations for the use case of this 
work to the extent that the rotation matrix should not be 
learnt, so that there are no rotations between the 
primitives. The procedure was tested on a chair model; in 
principle, the approach can be used to generate the 
primitives, but the predetermined number of primitives 
means that generic usability is only possible to a limited 
extent, but what causes a major obstacle in use is the lack 
of information on where and how the primitives touch, 
i.e., where transition areas are located. This is necessary 
at a later stage in order to define the forces and supports 
between the primitives. The occuring mistakes with this 
approach, which represent the reason for proceeding with 
a rule-based approach are shown in figure 3.

Fig. 3. Implementation of AI-based segmentation on 
example chair and occuring problems

4.2. Rule based segmentation approach

Generating the primitives according to certain rules is 
the most promising approach for the reason that all 
information can be saved during generation and used 
later. There is no black box behavior or lack of access to 
intermediate results. It is also possible for the user to 
change the parameters of the rules in order to make 
minimal improvements and specific adjustments. 
Cuboids were initially selected as primitives in this work.
One reason for this is the time of use of the method 
defined in (Ott et al., 2023), which takes place very early 
in the development stage, where cuboids can be used to 
quickly define construction spaces and any geometries in 
a simplified manner and, on the other hand, the ANN
operates on a voxel basis. Since voxels can only ever 
approximate a geometry, a kind of edge would result on 
non-planar surfaces, which could only be reduced by 
selecting an extremely high resolution. However, a high 
voxel resolution requires an extreme amount of memory, 
which causes problems when training the ANN. Since 
the output of this method also forms the basis for a 
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reconstruction, whether manual or automated is not 
relevant here in the first instance, a compromise between 
resolution and memory requirements is therefore 
preferable. The primitives should also consist of 
extrudable base surfaces. Within this work, these are the 
aforementioned cuboids with rectangles as base surfaces, 
but additional shapes such as cylinders with circles as 
base surfaces or similar are also conceivable. The 
principle of segmentation developed for this application 
is based on the detection of a change in cross-section in 
one spatial direction. A loaded component is iterated 
through in voxel representation. If a change in cross-
section is detected, a new primitive is created in this area 
based on the last change. These generated primitives can 
then be used for the subsequent steps of the individual 
model setups. The principle of segmentation is shown 
schematically in figure 4.

Fig. 4. The principle of segmentation

The additional major advantage over segmentation 
using ANN is the knowledge of the contact areas and 
positions of the primitives, as these are required for the 
subsequent conversion.

5. TECHNICAL IMPLEMENTATION OF 
METHODICAL WORKFLOW 

All technical implementations of the method were 
carried out in the low-code platform Synera. Since some 
of the workflows here are very extensive and have a high 
level of detail, so it is difficult to visualize them in such 
an elaboration, the entire workflow is represented in the 
Business Process Modeling Notation (BPMN).

The developed method, as previously described, uses 
primitives to abstract optimization. Initially, the part 
geometry, already in voxel form, is loaded. Next, layer 
information of the geometry is generated to determine 
how many primitives need to be created. For these 
primitives, a new bounding box is generated, and then 
the primitives are finally created with the previously 
determined boundary dimensions. The overall main 
functions described and shown in figure 5 are marked 
with letters A, B, C and D, which represent the sub-
processes, that are described in the following in detail. 

Fig. 5. BPMN representation of main functions of 
rule based primitive segmentation

Subprocess A is depicted in figure 6 and outlines the 
creation of layer information, which is essential for 
applying the principle described in chapter 3. Initially, 
the voxel space properties are extracted to identify active 
and inactive voxels. This data is used to determine the 
base area by averaging the number of voxels. Due to 
scaling, the Cartesian coordinates of edge lengths can 
differ with the geometry, so the voxel count on a plane is 
used to determine its cross-section. The plane is then 
shifted by one voxel row, initially described for the z-
direction (figure 10), and the area averages are 
recalculated. To process the voxel space within the plane 
and their associated cross-sections in terms of changes, a 
local field is created to compute these changes. The 
relevant plane information and their changes are stored 
in a list and passed to the next process.

Fig. 6. BPMN representation subprocess A

p p
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The next subprocess B (figure 7), determines the
number of primitives to be created. The threshold can be 
defined either by a relative change in voxels or an 
absolute value. The relative voxel change depends on the 
properties extracted in the previous process in the plane 
of consideration, while the absolute definition requires a 
fixed value. Both options can be used depending on the 
application and the geometry being analyzed to make the 
segmentation more precise in special cases. The voxel 
space, represented by the local field, is then filtered for 
changes using the preset threshold values. When changes 
are detected, the voxel space is split at those points in the 
plane, and the subdivisions are stored in a list. Finally, 
the length of the list is read. Since each change in the 
voxel space indicates a cross-sectional transition, a new 
primitive is created at each of these points, making the 
length of the list equal to the number of primitives to be 
generated.

Fig. 7. BPMN representation subprocess B

In the third subprocess C (figure 8), new bounding 
boxes for the identified primitives are generated. 
Initially, the segmented voxel space is loaded, and a 
bounding box is defined starting from the base of the 
voxel space. The height of the bounding box is set at the 
location where the cross-sectional change was detected. 
A list of the new voxels within the corresponding 
bounding boxes is then stored. At this stage, the 
bounding box only has the base area of the voxel space 
and the height of the change as its dimensions, while the 
dimensions in the remaining two spatial directions are 
not yet defined.

Fig. 8. BPMN representation subprocess C

The subprocess D is depicted in figure 9 and defines the 
maximum size of the primitives and generates them 
accordingly. First the voxel space properties are loaded, 
afterwards the upper and lower widths of the primitives 
are read from the former generated list. The maximum of 
both values is then defined as boundary boy width. This 
size is then extruded to the z-high where the cross-
section change was detected. If the algorithm searches 
just in one direction, the new primitive is safed to the list 
then, otherwise bool operations of the different sections 
are done before.

Fig. 9. BPMN representation subprocess D

6. PROOF OF CONCEPT 
In order to show, that the overall approach inclunding 

the segmentation algorithm works in generally, a proof 
of concept is presented in the following.

In this use case, the low-code platform Synera is used 
as a CAD environment, user interface and for part 
segmentation, software Altair Optistruct for topology 
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optimization, Python package PyTorch for the CNN
autoencoder, and AI platform Weights & Biases for 
monitoring the training process and hyperparameter 
tuning.

A mesh or voxelized object is used as the input for 
part segmentation. This input is converted into a centered 
and normalized voxel space with dimensions of
64x64x64 voxels. Subsequently, the gradient of the 
cross-sectional area is tracked for each voxel along the z-
axis. Additionally, the number of discontiguous voxel 
spaces, defined as areas not connected to any other active 
voxels, is recorded. For each separate voxel space, the z-
gradient serves as an indicator for new primitives. If the 
z-gradient exceeds a predefined threshold, a new 
primitive is created. Each primitive is represented by a 
cuboid encompassing all the original active voxels. 
Finally, each primitive is rescaled to fit into a 64x64x64
voxel space. The object maintains a maximum dimension
of 64 units, with the other dimensions undergoing 
perspective-based rescaling to match the primitives of 
the training dataset. To ensure the connectivity of all 
optimized primitives, the intersecting areas between 
primitives are designated as non-design-space, i.e., active 
voxels. Figure 10 illustrates the workflow and results for
an exemplary part, a fork head, segmented into 
primitives, including the network’s input of the initial 
iteration of the individual primitives and their subsequent 
reconnection.

Fig. 10. Proof of concept on example geometry

After the first iteration, the primitives are handed over to 
the ANN, which is represented by an autoencoder called 
U-Net. The Figure 11 shows at the top the given input 
(1st iteration of the primitives). The left bottom cornes 
represents the output of the ANN on voxel basis. 
Because it is hard to see the different depth in the voxel 
model, the model was transformed to a mesh surface, 
which can be seen at the right bottom corner. It is evident 
that the ANN can predict the individual primitives in an 
optimized form, employing structure-optimized patterns, 
as demonstrated by the visible supports of the upcoming 
interface in the right view.

Fig. 11. Prediction of neural network on example fork 
head

In this example the overall time reduction compared 
between conventional topology optimisation and the 
developed workflow is about 77%. 

7. CONCLUSION
Mass customization deals with the topics of

customized product in high production volumes. 
Especially in time consuming development and design 
stages these highly individualized products, lead to high 
costs, which contradicts with the aim of cheap products 
due to mass production. In order to overcome this issue
especially in terms of lightweight customized designs the 
structural optimization process needs to be revised.

Therefore, this study demonstrates how and why 
geometric models are abstracted and segmented into 
primitives, specifically in cuboid form, and why this is 
beneficial in the context of structural optimization using 
artificial neural networks to overcome the repeated 
generation of datasets. Initially, the topic is introduced, 
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explaining how abstraction can be implemented using 
ANNs, which approaches can be used, and why they are 
unsuitable for this specific application. Subsequently, a 
rule-based automated workflow is presented, which 
scans geometries for cross-sectional changes and then 
generates new primitives based on the identified 
changes. Additionally, a detailed BPMN-modeled 
process is provided to clarify the exact procedure. 
Finally, the proof of concept is explained and illustrated 
with results from previous work to integrate it into the 
overall methodology.

In general, it can be argued that the most favorable 
approach depends on the specific application case. For 
the application case presented in the study, integrating 
ANNs into structural optimization, the rule-based 
approach is significantly better due to improved 
information transfer between individual primitives. 
While AI-based methods do provide efficient 
segmentation and CSG-based predictions, they lose the 
connections and orientations between these primitives
which are essential for structural optimization. Future 
research can further explore how information and 
position transfer can be integrated into the structures of 
the tested ANNs. Additionally different aspects like the 
interface design for the connection between the 
primitives or the primitive’s selection itself can be 
relevant research topics.
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SOFTWARE
Information on Synera low code platform are available 
from: https://www.synera.io/
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