
Abstract: Generative design suggestions and topology
optimizations can help to reduce iterative process loops
between calculation and design departments during
product development processes. However, precise
topology optimizations are computationally intensive,
while generative designs benefit from swift suggestions
to address design problems efficiently. Using artificial
neural networks (ANN) can address this contrast of pre-
defined aims by predicting topology-optimized designs,
thereby combining both advantageous features.
However, a challenge in Mass Customization is, that
ANN are usually trained on specific geometries, making
transfer to other applications impractical or requiring
the creation of new datasets, which is economically
unfeasible. Authors have already demonstrated a
solution in other publications: dividing a geometry into
geometric primitives like cuboids to perform abstraction.
An ANN can then be trained to recognize optimized
cuboids, which can be assembled back into a complete
geometry, comparable to the finite element methods,
which divide geometries of parts in finite elements
enable mechanical property calculation. This publication
aims to illustrate the steps of the approach in which the
complete geometry of a part is segmented into these
primitives, and the benefits obtained. Various methods
will be explored, including automated workflows on
modern low-code platforms, to enable generalized use.
Key Words: Generative design; Topology optimization;
Artificial neural networks; Product design; Product
development

1. INTRODUCTION
The desire for individuality and the need to

distinguish oneself from others is inherent in human
nature and therefore of essential importance. At the same
time, given today's production volumes, it is a
tremendous technical challenge to meet this desire for
individuality within the constraints of quality, cost, and
especially time, which necessitates a shift in technical

thinking (Pfeifer, 2015). A high variety of options must
be tailored to the needs of the consumer while still
ensuring profitability. Simultaneously, sustainability
issues are ever-present, requiring a more conscious use
of existing resources in the form of efficient lightweight
construction (Kupfer, 2022). It is precisely in this context
that structural optimization comes into play, which is
typically carried out in existing development processes
by specialized, and thus limited and costly, personnel. In
terms of mass customization this means, that for
individual light weight products, structrual optimization
needs to be much more efficient to meet the goal of
effortable costs. Therefore, to ensure economic viability,
these processes must be rethought and optimized
(Georgiev, 2011; Zwettler, 2019).

In addition to sustainability, reports on artificial
intelligence and its applications are another driver of
modern visions, aimed at making human work more
efficient or even replacing it altogether (Scheuer, 2023).
Thus, it can therefore be inferred that the combination of
utilizing artificial intelligence in structural optimization
is indispensable for meeting the modern challenges in
individualized product development.

2. PROBLEM DESCRIPTION
Ensuring the mentioned sustainability through

efficient lightweight construction in times of increased
individualization is only possible if design processes are
automated or simplified to the extent that it becomes
economically feasible to design a wide variety of
products take into account the aforementioned factors.
Paying attention to lightweight construction and possibly
even carrying out initial calculations or structural
optimizations in the early phases of product
development, thus in the concept phase, appears
unmanageable in many parts of companies (Zwettler,
2019).

To automate such processes, artificial neural
networks (ANN) can be employed, which, mostly require
very data-intensive applications. Not least, this presents

Manuel Ott1, Niclas Meihöfener1, Iryna Mozgova1
1Paderborn University, Chair of data management in mechanical engineering, Paderborn, Germany

AN APPROACH TO USE GENERIC DATA
SETS FOR NEURAL NETWORKS IN

PRODUCT DESIGNS THROUGH
GEOMETRIC ABSTRACTION

VIA PRIMITIVES

 11th International Conference on Customization and
Personalization MCP 2024
The Power of Customization and Personalization
in the Digital Age
September 25-26, 2024, Novi Sad, Serbia

203

opportunities, which, based on various statistics, lead to
improvements in product quality and process
optimization. However, some surveys also reveal several
hurdles. As shown in (Deloitte, 2023), in addition to the
lack of competence and implementation challenges, data
problems are a significant factor.

The latter issue of data problems is gaining increasing
influence, particularly in fringe areas of applications,
including in the context of structural optimization. An
ANN requires a training dataset to perform tasks such as
prediction, analysis, and clustering. This dataset is used
to teach the ANN which input leads to which output.
Large amounts of data are needed for this purpose,
which, depending on the training method, must already
be labeled or may be available in raw, unorganized form
(Industrial-AI, 2021).

Various approaches to addressing these problems
exist in the literature. On the one hand, ANNs can be
used to generate numerical predictions for solving a
mathematical matrix or to accelerate the corresponding
algorithms. On the other hand, direct geometric elements
can also be predicted. Depending on the objective, large
datasets of various structurally optimized geometries are
necessary to teach the ANN how the corresponding
output should look under different assumptions
(Woldseth, 2022).

3. PREWORK AND METHODICAL APPROACH
Based on the explained problem, it is of great importance
to integrate ANNs and their possibilities to accelerate
processes into structural optimization. This has the
advantage that ANNs learn what structurally optimized
geometries look like. Ideally, a network only needs to be
trained once in order to be able to predict the subsequent
optimizations. However, difficulties are to be expected
when transferring to different geometries, as in (Ott et
al., 2022) have already shown, which is why a method
was developed that enables the generic use of a prepared
data set through the geometric abstraction of a complex
geometry by primitive geometries (Ott et al., 2023). This
method is shown in figure 1. The method distinguishes
between three areas: the one-off preliminary work to
train the ANN, the methodical steps to automatically
build the simplified optimization model and the
subsequent merging of the previously optimized
primitives into an overall geometry. By abstracting the
overall geometry, the data set can initially consist of
geometric primitives, which in the proof of concept are
cuboids. These are stored in the dataset in various
dimensions with various loads and their corresponding
optimizations. The methodical steps for building the
model first break down the overall geometry into the
individual primitives. This step is marked with an arrow
in the figure. More details about this building block and
how it was implemented are described next. The reaction
forces are then calculated for the primitives created and
the individual optimization models are built up.
However, only the first iteration needs to be calculated
here; the fully optimized primitives are then predicted by
an ANN trained on the dataset. In the final phase, the
individual primitives are then linked by interfaces to
form an overall geometry.

Fig. 1. Prework methodical approach for AI-assisted
optimisation

4. SEGMENTATION TO PRIMITIVES
Segmenting the existing geometry into individual

primitives abstracts a specific part into generalized equal
segments This problem of generalization is not only
significant in this application but can be found in nearly
every industrial application. For example, parts and
assemblies are often developed using a modular system
(such as in the automotive industry) to use as many
identical segments as possible and minimize the
production and development of unique parts, as this
would greatly increase the effort. Analogies can be
drawn to the developed approach, where primitives are
seen as components of this modular system, optimized
and reassembled by an ANN. Since the method should
be as automated as possible, ANN can be considered to
directly handle the segmentation into primitives. Another
way to achieve this is by defining a rule-based algorithm
that examines existing geometry for potential primitives
and creates them when the rule dictates. Therefore, these
two approaches and the experiments and results
conducted within this framework are explained to
support decision-making.

Dataset

Create design
spaces /
primitives

Define constraints
(forces, bearings,

etc.)

Create
optimisation

model

Topology
optimisation
(1. Iteration)

Topology
optimisation

(max. Iteration)

Primitives &
FEM-Constraints

Train neural
network

Dataset generation and training Generative Design loop

Combining
primitives to

complete part

Segmentation in
design spaces /

primitives

Topology
optimization
(1. Iteration)

Input (CAD-Mesh,
global FEM-
Constraints)

Output
(Topology optimised

geometry)

Primitives & FEM-
Constraints

Calculation
reaction forces of

all parts

Prediction of
primitives of neural

network

Once made
pre-work for

training

Methodical steps
preparing

optimisation model

Methodical steps for geometry
generation

204

4.1. Segmentation via neural networks

Selecting the ANNs for segmenting geometric
primitives in the application case described in this study
is limited by several constraints. The criteria include the
CSG (Constructive Solid Geometry) basis and the
outcome as a composite geometry made up of primitives.

The CSG approach, which is already successfully
used for many years, describes a form of representation
that essentially consists of generating a geometry using
boolean operations on basic solids (spheres, cones,
cylinders, rectangular solids, etc.). One of the greatest
advantages here is that the entire history of how a
geometry is created is stored in a logic process, which
makes it possible to implement changes to the model
very effectively. In today's CAD systems, however, this
representation method is only rarely used, but the
principle of the modelling method remains the same and
is represented in the figure below (Agoston, 2005; Fraß,
2009; Watt, 2002).)

Fig. 2. Representation of CSG concept

Initially, an approach, which is based on former
described CSG technique, published by (Ren et al., 2021)
was examined. In summary, this approach attempts to
convert a CAD input, represented as a point cloud, from
a high-hierarchy CSG tree into a low-hierarchy CSG tree
to ultimately remodel the geometry more effectively than
traditional methods. However, this approach focuses on
accurately and effectively remodeling the original
geometry, while the presented work needs to focus on
creation, subsequent access, and subdivision into
primitives, which is not guaranteed in (Ren et al., 2021).
Additionally, the presented in chapter 3 methodical
approach is based on voxel model representation, which
would implement an additional step of convertation from
point clouds to voxels.

The wanted approach should be one, which only
predicts the primitives that it finds in an existing
geometry, without saving the corresponding CSG tree, so
that only the primitives form the output and can be
accessed. It is not expedient for this elaboration if the
primitives are linked again at the end to form an overall
structure without being able to access the intermediate
steps, because this is precisely the point at which the
generalisation of the geometry makes it possible to use a

data set of the selected network for optimisation in a
generic way.

(Yang et al., 2021) published a network architecture,
which only tries to represent the given point cloud input
in single surface mesh-based primitives. Point cloud
segmentation does not matter much here, but
simultaneously generated primitives do. The mesh learns
the parameters of the primitives that it places over the
point clouds without being monitored and can change
these in order to represent the actual geometry more
accurately. The scaling, rotation and transformation
matrix are used for this purpose. In this approach, the
primitives to be used must be specified and also an
approximate number of them. The learning process was
restricted for the investigations for the use case of this
work to the extent that the rotation matrix should not be
learnt, so that there are no rotations between the
primitives. The procedure was tested on a chair model; in
principle, the approach can be used to generate the
primitives, but the predetermined number of primitives
means that generic usability is only possible to a limited
extent, but what causes a major obstacle in use is the lack
of information on where and how the primitives touch,
i.e., where transition areas are located. This is necessary
at a later stage in order to define the forces and supports
between the primitives. The occuring mistakes with this
approach, which represent the reason for proceeding with
a rule-based approach are shown in figure 3.

Fig. 3. Implementation of AI-based segmentation on
example chair and occuring problems

4.2. Rule based segmentation approach

Generating the primitives according to certain rules is
the most promising approach for the reason that all
information can be saved during generation and used
later. There is no black box behavior or lack of access to
intermediate results. It is also possible for the user to
change the parameters of the rules in order to make
minimal improvements and specific adjustments.
Cuboids were initially selected as primitives in this work.
One reason for this is the time of use of the method
defined in (Ott et al., 2023), which takes place very early
in the development stage, where cuboids can be used to
quickly define construction spaces and any geometries in
a simplified manner and, on the other hand, the ANN
operates on a voxel basis. Since voxels can only ever
approximate a geometry, a kind of edge would result on
non-planar surfaces, which could only be reduced by
selecting an extremely high resolution. However, a high
voxel resolution requires an extreme amount of memory,
which causes problems when training the ANN. Since
the output of this method also forms the basis for a

205

reconstruction, whether manual or automated is not
relevant here in the first instance, a compromise between
resolution and memory requirements is therefore
preferable. The primitives should also consist of
extrudable base surfaces. Within this work, these are the
aforementioned cuboids with rectangles as base surfaces,
but additional shapes such as cylinders with circles as
base surfaces or similar are also conceivable. The
principle of segmentation developed for this application
is based on the detection of a change in cross-section in
one spatial direction. A loaded component is iterated
through in voxel representation. If a change in cross-
section is detected, a new primitive is created in this area
based on the last change. These generated primitives can
then be used for the subsequent steps of the individual
model setups. The principle of segmentation is shown
schematically in figure 4.

Fig. 4. The principle of segmentation

The additional major advantage over segmentation
using ANN is the knowledge of the contact areas and
positions of the primitives, as these are required for the
subsequent conversion.

5. TECHNICAL IMPLEMENTATION OF
METHODICAL WORKFLOW

All technical implementations of the method were
carried out in the low-code platform Synera. Since some
of the workflows here are very extensive and have a high
level of detail, so it is difficult to visualize them in such
an elaboration, the entire workflow is represented in the
Business Process Modeling Notation (BPMN).

The developed method, as previously described, uses
primitives to abstract optimization. Initially, the part
geometry, already in voxel form, is loaded. Next, layer
information of the geometry is generated to determine
how many primitives need to be created. For these
primitives, a new bounding box is generated, and then
the primitives are finally created with the previously
determined boundary dimensions. The overall main
functions described and shown in figure 5 are marked
with letters A, B, C and D, which represent the sub-
processes, that are described in the following in detail.

Fig. 5. BPMN representation of main functions of
rule based primitive segmentation

Subprocess A is depicted in figure 6 and outlines the
creation of layer information, which is essential for
applying the principle described in chapter 3. Initially,
the voxel space properties are extracted to identify active
and inactive voxels. This data is used to determine the
base area by averaging the number of voxels. Due to
scaling, the Cartesian coordinates of edge lengths can
differ with the geometry, so the voxel count on a plane is
used to determine its cross-section. The plane is then
shifted by one voxel row, initially described for the z-
direction (figure 10), and the area averages are
recalculated. To process the voxel space within the plane
and their associated cross-sections in terms of changes, a
local field is created to compute these changes. The
relevant plane information and their changes are stored
in a list and passed to the next process.

Fig. 6. BPMN representation subprocess A

p p

206

The next subprocess B (figure 7), determines the
number of primitives to be created. The threshold can be
defined either by a relative change in voxels or an
absolute value. The relative voxel change depends on the
properties extracted in the previous process in the plane
of consideration, while the absolute definition requires a
fixed value. Both options can be used depending on the
application and the geometry being analyzed to make the
segmentation more precise in special cases. The voxel
space, represented by the local field, is then filtered for
changes using the preset threshold values. When changes
are detected, the voxel space is split at those points in the
plane, and the subdivisions are stored in a list. Finally,
the length of the list is read. Since each change in the
voxel space indicates a cross-sectional transition, a new
primitive is created at each of these points, making the
length of the list equal to the number of primitives to be
generated.

Fig. 7. BPMN representation subprocess B

In the third subprocess C (figure 8), new bounding
boxes for the identified primitives are generated.
Initially, the segmented voxel space is loaded, and a
bounding box is defined starting from the base of the
voxel space. The height of the bounding box is set at the
location where the cross-sectional change was detected.
A list of the new voxels within the corresponding
bounding boxes is then stored. At this stage, the
bounding box only has the base area of the voxel space
and the height of the change as its dimensions, while the
dimensions in the remaining two spatial directions are
not yet defined.

Fig. 8. BPMN representation subprocess C

The subprocess D is depicted in figure 9 and defines the
maximum size of the primitives and generates them
accordingly. First the voxel space properties are loaded,
afterwards the upper and lower widths of the primitives
are read from the former generated list. The maximum of
both values is then defined as boundary boy width. This
size is then extruded to the z-high where the cross-
section change was detected. If the algorithm searches
just in one direction, the new primitive is safed to the list
then, otherwise bool operations of the different sections
are done before.

Fig. 9. BPMN representation subprocess D

6. PROOF OF CONCEPT
In order to show, that the overall approach inclunding

the segmentation algorithm works in generally, a proof
of concept is presented in the following.

In this use case, the low-code platform Synera is used
as a CAD environment, user interface and for part
segmentation, software Altair Optistruct for topology

207

optimization, Python package PyTorch for the CNN
autoencoder, and AI platform Weights & Biases for
monitoring the training process and hyperparameter
tuning.

A mesh or voxelized object is used as the input for
part segmentation. This input is converted into a centered
and normalized voxel space with dimensions of
64x64x64 voxels. Subsequently, the gradient of the
cross-sectional area is tracked for each voxel along the z-
axis. Additionally, the number of discontiguous voxel
spaces, defined as areas not connected to any other active
voxels, is recorded. For each separate voxel space, the z-
gradient serves as an indicator for new primitives. If the
z-gradient exceeds a predefined threshold, a new
primitive is created. Each primitive is represented by a
cuboid encompassing all the original active voxels.
Finally, each primitive is rescaled to fit into a 64x64x64
voxel space. The object maintains a maximum dimension
of 64 units, with the other dimensions undergoing
perspective-based rescaling to match the primitives of
the training dataset. To ensure the connectivity of all
optimized primitives, the intersecting areas between
primitives are designated as non-design-space, i.e., active
voxels. Figure 10 illustrates the workflow and results for
an exemplary part, a fork head, segmented into
primitives, including the network’s input of the initial
iteration of the individual primitives and their subsequent
reconnection.

Fig. 10. Proof of concept on example geometry

After the first iteration, the primitives are handed over to
the ANN, which is represented by an autoencoder called
U-Net. The Figure 11 shows at the top the given input
(1st iteration of the primitives). The left bottom cornes
represents the output of the ANN on voxel basis.
Because it is hard to see the different depth in the voxel
model, the model was transformed to a mesh surface,
which can be seen at the right bottom corner. It is evident
that the ANN can predict the individual primitives in an
optimized form, employing structure-optimized patterns,
as demonstrated by the visible supports of the upcoming
interface in the right view.

Fig. 11. Prediction of neural network on example fork
head

In this example the overall time reduction compared
between conventional topology optimisation and the
developed workflow is about 77%.

7. CONCLUSION
Mass customization deals with the topics of

customized product in high production volumes.
Especially in time consuming development and design
stages these highly individualized products, lead to high
costs, which contradicts with the aim of cheap products
due to mass production. In order to overcome this issue
especially in terms of lightweight customized designs the
structural optimization process needs to be revised.

Therefore, this study demonstrates how and why
geometric models are abstracted and segmented into
primitives, specifically in cuboid form, and why this is
beneficial in the context of structural optimization using
artificial neural networks to overcome the repeated
generation of datasets. Initially, the topic is introduced,

208

explaining how abstraction can be implemented using
ANNs, which approaches can be used, and why they are
unsuitable for this specific application. Subsequently, a
rule-based automated workflow is presented, which
scans geometries for cross-sectional changes and then
generates new primitives based on the identified
changes. Additionally, a detailed BPMN-modeled
process is provided to clarify the exact procedure.
Finally, the proof of concept is explained and illustrated
with results from previous work to integrate it into the
overall methodology.

In general, it can be argued that the most favorable
approach depends on the specific application case. For
the application case presented in the study, integrating
ANNs into structural optimization, the rule-based
approach is significantly better due to improved
information transfer between individual primitives.
While AI-based methods do provide efficient
segmentation and CSG-based predictions, they lose the
connections and orientations between these primitives
which are essential for structural optimization. Future
research can further explore how information and
position transfer can be integrated into the structures of
the tested ANNs. Additionally different aspects like the
interface design for the connection between the
primitives or the primitive’s selection itself can be
relevant research topics.

8. REFERENCES
Agoston, M. K. (2005): Computer graphics and
geometric modeling: Implementation and Algorithms.
Springer-Verlag London Limited, London, 2005 – ISBN
1-85233-818-0

Deloitte (2021): Hemmnisse der Künstlichen Intelligenz
in Deutschland im Jahr 2021. Available from Statista
from:
https://de.statista.com/statistik/daten/studie/1297746/umf
rage/hemmnisse-durch-kuenstliche-intelligenz-in-
mittelstandsunternehmen/
[Accessed 26th January 2023]

Fraß, C. (2009): Grundlagen der 3D-Modellierung.
Projektseminar, Technische Universität Dresden, 28.
April 2009

Georgiev, C., Chakmakov, G., Todorov, G. & Nikolov,
N. (2011): Structural Optimization Methods in the
modern product development process. Wissenschaftliche
Konferenz – Innovationen und Wettbewerbsfähigkeit,
Sofia, November, 2011.

Industrial-AI (2021): Stau auf der Datenautobahn. News
from 09.08.2021 from: https://ind-ai.net/industrielle-
produktion/stau-auf-der-datenautobahn/
[Accessed 5th December 2023]

Kupfer, R., Schilling, L., Spitzer, S., Zichner, M., &
Gude, M. (2022): Neutral lightweight engineering: a
holistic approach towards sustainability driven
engineering. In: Discover Sustainibility 3, Art. No. 17,

Springer Link. Available from: doi: 10.1007/s43621-
022-00084-9

Ott, M., Meihöfener, N., & Mozgova, I (2023):
Methodical Approach to Reducing Design Time by using
Neural Networks in Early Stages of Concept
Development. In: 34th Annual International Solid
Freeform Fabrication Symposium, Austin, Texas, 2023

Ott, M., Meihöfener, N., & Koch, R. (2022): Neuronale
Netze in der Konstruktion zur Ausschöpfung der
Potentiale additiver Fertigungsverfahren. In: 7. Tagung
des DVM-Arbeitskreises „additiv gefertigte Bauteile und
Strukturen“, Tagungsband, Berlin, 8. + 9.November
2022. Available from: doi: 10.48447/ADD-2022-014
Pfeifer, T. & Schmitt, R. (2015): Qualitätsmanagement –
Strategien – Methoden – Techniken. Carl Hanser Verlag,
München, 2015 – ISBN 978-3-446-43432-5

Ren, D., Zheng, J., Cai, J., Li, J., Jiang, H., Cai, Z.,
Zhang, J., Pan, L., Zhang, M., Zhao, H. & Yi, S. (2021):
CSG-Stump: A Learning Friendly CSG-Like
Representation for Interpretable Shape Parsing. In:
International Conference on Computer Vision 2021,
Canada, Montreal, 2021. Available from: e-print arXiv
doi: 10.48550/arXiv.2108.11305

Scheuer, S. (2023): CEO Sataya Nadella sieht KI als
zentralen Wachstumstreiber. In Handelsblatt from
25.01.2023. Available from:
https://www.handelsblatt.com/technik/it-
internet/microsoft-ceo-sataya-nadella-sieht-ki-als-
zentralen-wachstumstreiber/28942300.html
[Accessed 18th December 2023]

Watt, A. (2002): 3-D Computergrafik – 3. Auflage.
Pearson Studium, München, 2002 – ISBN 3-8273-7014-
0

Woldseth, R., Aage, N., Baerentzen, J.A. & Sigmund, O.
(2022): On the use of artificial neural networks in
topology optimisation. In Structural and
Multidisciplinary Optimization Vol. 65, Springer
Vieweg. Available from: doi: 10.1007/s00158-022-
03347-1

Yang, K. & Chen, X. (2021): Unsivervised Learning for
Cuboid Shape Abstraction via Joint Segmentation from
Point Clouds. In ACM Transactions on Gra-phics, Vol.
40 (4), Art.No. 152, August, 2021. Available from: doi:
10.1145/3450626.3459873

Zwettler, M. (2019): Sechs zu vermeidende Probleme
beim Einsatz von Simulation in der Konstruktion. In
Konstruktionspraxis from 27.05.2019. Available from:
https://www.konstruktionspraxis.vogel.de/sechs-zu-
vermeidende-probleme-beim-einsatz-von-simulation-in-
der-konstruktion-a-833354/
[Accessed 25th January 2023]

209

SOFTWARE
Information on Synera low code platform are available
from: https://www.synera.io/

CORRESPONDENCE

Manuel Ott, Research Assistant
Paderborn University
Faculty of mechanical
engineering,
Warburger Straße 100
33098 Paderborn, Germany
manuel.ott@uni-paderborn.de

Niclas Meihöfener, Research
Assistant
Paderborn University
Faculty of mechanical
engineering,
Warburger Straße 100
33098 Paderborn, Germany
niclas.meihoefener@uni-

paderborn.de

Dr. Iryna Mozgova, Prof.
Paderborn University
Faculty of mechanical
engineering,
Warburger Straße 100
33098 Paderborn, Germany
iryna.mozgova@uni-paderborn.de

210

