
Abstract: With rising customization demands, optimizing 
flexibility, productivity, and cost is essential. Traditional 
specialized processes are time-consuming and costly, 
especially when errors emerge during assembly. This 
paper introduces a multi-agent system (MAS) for 
automated assembly sequence generation. The system 
combines and complements existing sequencing
approaches to allocate tasks to agents that analyze
Computer-Aided Design (CAD) models, assess relations
and dependencies, detect fasteners via image 
classification and utilize a graph-based approach to 
identify every potential assembly sequence. This 
facilitates early problem detection and workflow 
simplification for design engineers, ultimately enhancing 
efficiency and reducing costs in the product development 
cycle.
Key Words: Assembly Planning (AP), Graph-based, 
Knowledge-based Engineering (KBE), Multi-Agent 
System (MAS)

1. INTRODUCTION
Flexibility, productivity and cost optimization are 

becoming increasingly important as the demand for 
customization grows (Kumar, 2007). Specializing
development, manufacturing and assembly processes for 
certain products requires time and expertise. To reduce the 
workload and pressure on developers and designers, it is 
necessary to optimize and support development and 
planning processes. Errors in assembly processes that are 
only discovered during assembly are particularly time-
consuming, as the root of the problem may already lie in 
the requirements of the product and therefore the entire 
development cycle has to be run through again. In 
addition, the production and procurement of the individual 
components have already resulted in a high-cost factor. 
Digitalization in these areas allows early identification 
and implementation of improvements in models and 
processes (Chauhan et al., 2023). In addition, companies 
can reduce development costs, shorten time-to-market and 
improve the quality of their products through automated 
and optimized processes.

This paper investigates the automated generation of 
assembly sequences from a 3D-model using a MAS to 
tackle the factors mentioned above. The agent system 
offers the possibility to automatically divide work 

packages into agents, to compare the processed 
information with other agents and to recognize conflicts, 
as well as to parallelize the processes (Jennings & 
Wooldridge, 1995). The CAD model is read out with 
different agents, the relations and dependencies of 
individual components are examined and then stored in a 
graph-based approach, which provides the possibility to 
work out possible (dis-)assembly sequences. The result is 
a scalable work simplification for the design engineers, 
with early identification of possible assembly sequences 
and potential problems. Therefore, multiple approaches 
are divided into separated agents and then fused in a MAS 
to figure out the possibilities of distributed systems in an 
assembly path-finding process.

To describe the path to the evaluated system, the paper 
is structured as follows: Section 2 presents the theoretical 
background and related work on multi-agent systems and 
automatic assembly planning. The methodological 
approach is then described in Section 3. The approach of 
a graph-based MAS for analyzing and subsequently 
finding an assembly path is explained in section 4 using 
an application example and discussed in section 5. A 
summary and description of further research can be found 
in Section 6. 

2. THEORETICAL BACKGROUND AND 
RELATED WORK

The search for a solution to the flood of information 
has been an important area of research since the early 
1990s. The possibility of collecting and processing data 
from various databases with minimal human intervention
to solve a problem is still being sought and further 
developed today (Borghoff & Schlichter, 1998; Chauhan
et al., 2023).

The approach of splitting a problem into very small 
instances and then combining smaller programs to cover 
certain parts of the problem and additionally to learn from 
the processing cycle seems illusory at first. The first 
approaches to adaptive and intelligent agents, which are 
intended to support humans in almost all areas, laid the 
foundations (Eymann, 2003). In general, the agent can be 
described as a unit that generates an output from an input 
by means of information processing and performs defined 
tasks in the process (Ertel, 2016). The agents virtually 
represent people or machines and act independently 
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within defined limits. They are therefore classified as 
work facilitation and assistance for the user (Eymann, 
2003).

In addition to the five main properties (observation, 
autonomy, mobility, communication and intelligence) 
described by Dostatni et al. (2013), according to Weyns 
(2010), agents have three services for interacting with the 
environment and accomplishing tasks. These include the 
function/action service, the perception service (sensors) 
and the communication service. With these services, the 
agent is able to analyze the environment, develop 
solutions and implement them. It also has an internal 
knowledge memory in which data collected during the 
process is stored.

Agents are generally classified as deliberative, 
reactive and hybrid agents. Deliberative agents are 
characterized by their explicitly representative database, 
the continuous cycle of observing, deciding and acting, as 
well as decision-making by inference. In contrast, reactive 
agents are situational and only perceive the current status 
of the environment and react directly to it (Eymann, 
2003). The characteristics of these two classes are 
combined in the hybrid approach. Behaviors, planning and 
cooperation are divided into levels. This level model is 
known as the InteRRaP architecture. Furthermore, the 
agents have an internal knowledge base and an interface 
to the environment, the so-called ‘world interface’
(Bussmann et al., 2004).

The BDI architecture by Geogeff and Rao (1992) is the 
best-known approach for deliberative agents. The 
architecture intends to implement mental properties and 
thus a conscience for the agent. The properties 
fundamentally include Beliefs, Desires and Intentions. 
These are extended by Uncertainty. From this, the agent 
can in turn derive and implement goals and plans
(Borghoff & Schlichter, 1998; Eymann, 2003).

These architectures have been integrated into 
frameworks to simplify the programming of agent 
systems. SPADE (Smart Python Agent Development 
Environment) is a newer framework. The framework is 
Python-based and enables agents to communicate easily 
via XMPP, which also provides a simple interface to the 
user via instant messages. It also supports asynchronous, 
distributed and open systems. Since the framework was 
developed in Python, there is a broad basis for expansion 
and improvement, as Python is one of the most widely 
used programming languages in the field of AI (Artificial
Intelligence), which is also supported by a large and active 
community (Palanca et al., 2020). In addition, SPADE has 
an extension option with spade-bdi, an implementation of 
BDI agents that enables the reading and execution of ASL 
files programmed in AgentSpeak via an interpreter. In this 
file, plans can be defined in simplified language that 
trigger belief changes and intentions in the agent using the 
stored triggers (Palanca et al., 2022).

In the literature, MAS are mainly used for path 
optimization and robot coordination in the assembly 
process to avoid collisions and find alternative assembly 
paths, due to the simple formalization of rules
(Gembarski, 2020). There is no direct approach to CAD 
assemblies for assembly capability and the direct 
derivation of assembly sequences. Nevertheless, there are 
MAS approaches in design support and feature 

recognition. Chu et al. (2009) use a MAS to enable 
geographically separated work groups to work 
synchronously and to hide certain model details 
depending on the user's responsibilities. Another approach 
uses feature recognition agents for automatic adaptation to 
new situations (Fougères & Ostrosi, 2018). A similar 
adaptation is used by Plappert et al. (2023) in the course 
of the manufacturing restrictions of milling constructions 
resulting from feature recognition from graph-based 
methods for the automatic adaptation of individual CAD 
parts. They also present a possibility to communicate with 
the MAS through XMPP to check the need for chamfers 
and fillets in the CAD model.

For the most part, these approaches relate to individual 
parts, while assembly takes the models one level higher. 
Here, it is not only the relationships between individual 
surfaces and edges that are important, but also the 
relationships beyond the component. This implies 
contacting surfaces and functions of the individual 
surfaces and components. The ‘assembly by disassembly’
method is an important procedure for determining the 
assembly sequence. With its help, sequences and 
problems during assembly and disassembly can be easily 
detected by removing individual parts from an assembly 
piece by piece. The approach shows directly if the 
component is blocked or possible to disassemble by 
iterating different ways out of the assembly. In reverse, it 
is an indication of whether it can be assembled.
Nevertheless, this method is very time-consuming due to 
the iteration of all possibilities. Ghandi and Masehian
(2015) present five main categories of compiled methods 
for assembly planning. These include grid-based, graph-
based, sampling-based methods, spatial decompositions 
and interactive approaches.

The grid-based and graph-based methods discretize a 
search space by reducing the action space with subspaces. 
The graph-based methods use a model of nodes together 
with weighted and directed connections to visualize 
relationships between components. This can be used to 
examine contact points or blocked paths in assemblies.
For example, Belhadj et al. (2016) use this approach to 
find sub-assemblies with liaison graphs and Agrawal et al. 
(2014) use liaison and block graphs to detect collision-free 
assembly paths. Spatial partitioning is also used in other 
approaches to simplify the workspace. This is done by 
filtering processing or movement directions or by finding 
action spaces. Zhang et al. (2017) use the possible 
disassembly directions to set up interference matrices. The 
matrices can then be evaluated to check which component 
is blocked in which direction during disassembly. By 
comparing all directions and the number of interferences, 
a possible (dis-)assembly sequence can be found.

Based on the theoretical background and the related 
work of MAS and assembly path-finding, a MAS for 
automated assembly path-finding with graph-based 
methods is investigated as there is no approach in the 
literature. The system is designed to combine the 
advantages of distributed and graph-based assembly path 
planning solutions in a multi-agent system to save costs 
and time by alerting developers to further problems at an 
early stage and suggesting reliable solutions. The field of 
application is product development, with regard to a 
design review for the evaluation of assembly feasibility. 
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The following research questions were identified for the 
investigation:

How are assemblies and the links between 
individual components structured in a CAD 
model, and how can information be extracted 
from a 3D assembly via an interface to the 
CAD system, processed and displayed in a 
graph-based manner?

Which roles and agents are relevant in the 
process of finding assembly sequences, what 
problems or opportunities arise from their 
communication, and is a multi-agent system 
(MAS) suitable for the creation of assembly 
sequences?

3. METHODOLOGICAL PROCEDURE
Methods of the design process are used to support the 

analysis and construction of the system. In the following, 
the Multiagent Systems Engineering for Engineering 
Design (MaSE4D) method shown in Fig. 1 is presented, 
which is based on the MaSE method by Deloach et al. 
(2001) with elements of ROADMAP (Plappert, 2023).
MaSE was developed specifically for heterogeneous MAS 
to create distributed, intelligent and robust applications. It 
covers the entire life cycle and provides an insight into the 
details of the system using the Unified Modelling 
Language (UML). This is intended to make 
communication and cooperation between agents simpler 
and more transparent (Deloach et al., 2001).

The opposing triangles in the background represent the 
level of detail, from the broad system context to the inner 
knowledge model and then back to the outer overall 
system (Plappert, 2023).

The method is divided into the analysis and design 
phases. In the analysis phase, goals are first defined to
generate use cases and consequently derive roles. This is 
achieved in two stages (Deloach et al., 2001; Plappert, 
2023):

Develop use cases: Extracting and structuring 
system objectives from the requirements, 
visualized in a hierarchy diagram. Translating the 
objectives into use cases using various scenarios. 
Visualization and detailing in a use case diagram.

Refine roles: Assign tasks to specific roles, 
organize them in a role model and depict the 
processing and dependencies in an interaction 
model.

The design phase translates the previously defined 
roles and goals into agents, a communication network and 
the final system. This phase consists of the following four 
levels (Deloach et al., 2001; Plappert, 2023):

VI Operational: Develop the required knowledge 
and identify communication protocols. 

III Agents: Derive agent classes from the roles that 
have functions to fulfill their roles. A class 
diagram is created from this. 

II Management: Graphically visualizes the 
communication between agents in the form of 
state machines or sequence diagrams. It should be 

noted that some tasks require communication with 
several agents and that a higher-level location is 
useful for better organization. Based on this, 
create an arbitrary architecture of the agents using 
UML components.  

I Users: Determine the final configuration (types 
and number of agents, platform, interfaces) and 
structure of the system, documented in a structure 
diagram. Subsequent implementation and testing 
by the users in the system context.

Fig. 1. MaSE4D-Phases according to Plappert 
(Plappert, 2023)

4. ASSEMBLY ANALYSIS WITH MULTI-AGENT 
SYSTEMS

4.1. Specification

The basic objectives of a support system are speed, 
ease of use and broad applicability, as well as robust 
solution finding and detailed documentation. To achieve 
these goals, target groups, application areas, company 
structures and possible inputs and outputs must first be 
analyzed.

In this case, a system is set up for the development or 
construction of an assembly. This implies that the 
realization of a concept in a 3D model does not mark the 
end of the development. The subsequent process steps are 
important instances for assessing the manufacturability 
and usability of the product. It therefore makes sense to 
integrate the planning, production and assembly cycles 
into the development process to recognise and eliminate 
problems at an early stage.

The solution is to provide engineers with applications 
that simplify their daily tasks and share some of their 
responsibilities. A key area is communication within the 
product life cycle, which often involves multiple expert 
opinions and can lead to misunderstandings, errors, or 
safety issues. Each change requires time-consuming 
validation or simulation loops, and some problems only 
become apparent during work or production planning. 
These challenges drive the development of tools that 
enhance safety, predictability, and integration into one 
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application. This application would simulate and compare 
databases to identify design issues, safety concerns, and 
guideline breaches, and facilitate communication with 
relevant departments. The system would log processes for 
transparency and traceability. When assembling modules, 
the design must consider restrictions from available 
machines, tools, and assembly structures, requiring the 
definition of use cases and roles. 

Fig. 2 shows the use cases of the system. The user 
selects an assembly to be examined, which is read out by 
agents that also recognize connecting elements and 
patterns in the individual parts and use the relationships 
between the individual parts to show possible assembly 
sequences, visualize the results and then store them for 
documentation.

Fig. 2. Use-Case diagram

These use cases result in the roles and their 
dependencies shown in Fig. 3. On the one hand, the 
subdivision serves to subdivide areas so that areas of
responsibility can be separated from each other and, on the 
other hand, to enable individual processes to be 
parallelized to save time and utilize computing power.

Fig. 3. Examined Roles

The master role is assumed by the manager, which is 
started via a Graphical User Interface (GUI), monitors the 
system and distributes the overall problem to subordinate 
instances. Such a structure enables better and simpler 
coordination of the agents and tasks. The Inventor role, 
which forms the interface to the CAD system and extracts 
the necessary information from the model, is subordinate. 
This role is separated to avoid overlapping access to the 
model. Furthermore, the pattern role attempts to find 
patterns in the individual parts to simplify the overall 
structure. The classification role is responsible for 
assigning certain classes to the individual parts to
differentiate their use. This role is well suited to 
parallelization due to the consideration of individual 
components without reference to the assembly. For this 
reason, this task is separated into a role and reserved for 
the use of runtime-generated agents. The sequence role 
creates possible assembly sequences and the results are 
then visualized by the graph role. Outsourcing the creation 
of the graph makes it possible to prioritize the subsequent 
processes. The graph is largely used for sequence 

determination at the end of the process and can therefore 
operate in parallel with the other tasks. Furthermore, it is 
responsible for visualization in an image format, which is 
also only required for later archiving. Other agent results 
are stored directly in a results folder for archiving.

4.2. Architecture

The next step is to define the individual agents. The 
architecture of an agent is presented first. As shown in Fig. 
4, the agent is programmed in Python using a MAS 
framework named SPADE (Palanca et al., 2022). This 
already has predefined agent classes, which are extended 
with the BDI approach using the spade-bdi library. 

Fig. 4. Architecture of an Agent according to 
(Plappert et al., 2022)

Each agent has five modules (Plappert, 2023):

Sensors: Form the interface to the CAD-model 
and external influences by extracting information 
from the environment.

Inference-Machine: The agent's brain, collects the 
incoming information and generates solutions 
according to its beliefs and intentions to achieve 
the desires and goals.

Knowledge-Modul: The knowledge module 
manages external databases like thread-tables and 
stored graphs by extracting information from 
them or expanding them with the knowledge 
acquired during processing.

Communication-Modul: The module uses an 
XMPP server to communicate and share acquired 
knowledge with other agents. Performatives 
defined by FIPA are used to categorize the 
intention of the message.

Action-Modul: Once a solution has been found, it
can be implemented in the environment or saved 
in a desired output using the action module.

In addition, each agent has an ASL file in which goals, 
intentions and desires are defined and the agent's beliefs 
are described and manipulated. The language AgentSpeak 
is used in the ASL file. This is a simple programming 
language that executes functions with trigger events. In 
the BDI view, the triggers are belief changes, goal 
realizations or test goals. However, belief changes in the 
ASL can also be triggered directly in the ASL.

4.3. Implementation

The basic task of an agent is to generate a possible 
output from an input. To achieve this, the agent must 
independently gather information and process it. This 
includes information or knowledge from databases, 
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opinions from users or other agents and, most importantly 
in the context of this work, information from the CAD 
assembly. This includes points, edges, surfaces and their 
relationships to each other. These are the properties that 
B-Rep and possibly CSG represent. (Stroud, 2011).
Furthermore, the relationship of these structures and their 
dependencies between individual parts is also crucial. 

Fig. 5. Activity diagram of the agents for finding 
assembly sequences

Therefore, the most important instance in this system 
is the reading of the CAD model. The agents have to 
generate an image of the assembly themselves from the 
information read out and adapt it if necessary. The 
obstacle is the Python interface to Autodesk Inventor, as 
Inventor is designed for the ‘Visual Basics for 
Application’ (VBA) programming language and is 
therefore a Windows-based application. A VBA editor is 
therefore also implemented in Inventor (Ekins, 2007).

The Python library ‘PyWin32’ enables access to the 
‘Windows Application Programming Interface’ (API) and 
thus to the API Object Model implemented in Inventor. It 
is important to address the correct class type when 
reading. By default, the ‘Object’ type is accessed, but this 
does not have all the attributes that the ‘Edge’ type has, 
for example. Here the Win32 library also contains a 
‘CastTo()’ function, which assigns a new class type to a 
previously declared path. The entire structure and 
properties of the model can be read out using the interface 
created. Other object libraries can also be integrated via 
Python, such as ‘Scripting’ or ‘mscorlib’, which can 
retrieve objects from Windows libraries. This makes it 
possible to use Windows-based dictionaries and array 
lists. This is particularly important when accessing VBA 

functions via Python, as these only accept predefined 
object types that differ from the Python-based types.

In the following, the MAS is built up from the 
extracted roles, access to the 3D model and other 
functions for examining the model. The process and 
communication are also described here. To make it easier 
to follow the program flow is shown in Fig. 5 and the flow 
of information is visualised in Fig. 6.

Fig. 6. Information exchange between the different 
roles

When the program is started by the user, a GUI 
appears in which the user can select the assembly to be 
examined. In addition, the interface has a status display to 
show the current progress of the program and also the 
status of the agents used. This status display is 
continuously updated by the manager agent as soon as an 
agent changes its status.

When an assembly is selected and the 'Get Started'
button is pressed, the MAS starts. First, the manager agent 
is started by transferring the assembly path. This then 
starts the Graph, Inventor, Pattern and Sequence agents 
with the help of an integrated behavior for starting other 
agents.

Once the Inventor agent has started successfully, the 
Manager agent sends it the path of the assembly to be 
examined. With this path, the Inventor agent opens the 
respective assembly in Autodesk Inventor and starts to 
extract information from the model. First, a screenshot of 
the assembly is created for the archive. The agent then 
reads existing connections between the individual parts it 
contains. The collected individual parts are then 
forwarded to the Manager agent and the connections to the 
Graph agent.

The Inventor agent also reads a stored thread table. 
With this table, the agent can recognize threads when 
querying blocked paths and thus treat these affected areas 
accordingly. After processing, the function described 
above returns a dictionary with threads and the 
relationships of blocked individual parts. This dictionary 
is then forwarded to the Graph agent.

The Graph agent uses the connections to create a 
liaison graph, which shows the connection between the 
individual parts, and a block graph for each direction, 
which shows the parts blocked by the components. The 
Python package ‘networkx’ is used to translate the list of 
connections into a graph type. This graph is then plotted 
in a PNG file using the ‘matplotlib’ library. The block 
graphs are also converted into directed graphs and plotted 
using these packages. The block matrices generated when 
the graphs are created are then sent to the Sequence agent. 
At the same time, the Manager agent creates a 
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Classification agent for each individual part using the 
individual part dictionary.

The Classification agent creates a screenshot with the 
respective file path of the individual part. This image is 
analyzed with the previously trained image classifier with 
TensorFlow and assigned to a class, e.g. screws or 
washers. The classes and the accuracy are transferred to 
the Manager agent and the Classification agents can log 
off.

Once all individual parts have been classified, the 
Manager agent forwards the individual part dictionary to 
the Pattern agent. The Pattern agent searches for patterns 
of connecting elements in the individual parts using the 
function described above, which simplifies the further 
procedure. The results are then passed to the Manager 
agent, which implements them in the parts dictionary and 
forwards them to the Graph agent.

The Graph agent integrates the patterns into the 
already created graphs and merges several nodes and 
adopts their connections. The results are in turn exported 
to PNG files and the new matrices of the block graphs are 
transferred to the Sequence agent.

As soon as the Sequence agent has received the 
matrices, it creates the AIM (Assembly Interference 
Matrix) and DAIM (Directional Assembly Interference 
Matrix) from these matrices, both for the individual parts 
and for those with patterns. These are further processed 
with the sequence check, sequence paths are generated 
and the matrices are regenerated. The resulting AIMs are 
saved for the individual parts and matrices with patterns 
and the resulting dictionary is sent to the Graph agent. 

The Graph agent creates a diagram from the sequence 
dictionary, which is exported in a PNG format. This 
makes it easy to trace the dis- and assembly sequences. 

After all agents have changed their status to ‘Done’,
the Manager agent collects the results and a new tab with 
the results appears in the GUI. The time required is also 
displayed in the status field.

4.4. Application Results

To better explain and show the functions of the MAS, 
a puzzle assembly as shown in Fig. 7 is used as an 
illustrative example. The assembly consists of a base 
plate, two interlocking puzzle pieces and five screws that 
connect these elements. In addition, the base plate has an 
edge that prevents the puzzle pieces from slipping without 
being screwed together.

Fig. 7. Example Puzzle-Assembly

The assembly is loaded into the system via the GUI 
and then opened in Autodesk Inventor. The connections 
and blocked assembly paths are read out here. These are 
translated directly into the liaison graph and direction-

dependent block graphs shown in Fig. 8. In this case, the 
liaison graph is very clear and depicts the existing 
connections between the individual parts with the help of 
a line between the respective nodes.

Fig. 8. Liaison-Graph of the Puzzle-Assembly

The block graphs are created for six mounting 
directions predefined in the program. It is important to 
note that the arrow represents ‘...is blocked by...’. An 
example of these block graphs is shown in Fig. 9. The 
graph shows the blocking components in the negative X 
direction. It can be seen, for example, that the component 
‘Puzzle1:1’ blocks the screw ‘ISO 4762 M8 x 50:2’ in this 
direction, but the screw also blocks the component. The 
situation is different between the screws ‘ISO 4762 M8 x 
50:1’ and ‘ISO 4762 M8 x 50:2’, here only the first is 
blocked by the second.

Fig. 9. Block-Graph in -X of the Puzzle-Assembly

To improve the overview of the graphs and save time, 
patterns of fasteners are searched for in the assemblies. To 
do this, all components are first classified by creating 
screenshots of the individual parts and assigning them to 
predefined classes using an image classifier. The results 
of the classification are shown in Table 1. It can be seen 
here that the screws are assigned to the correct class with 
a very high accuracy of almost 100%. The puzzle pieces 
are also assigned to the correct class. Only the 
Groundplate is not classified correctly, as the image 
classifier looks for similarities in the color pixel pattern of 
the training data and the images of the bearings fit better 
here. In this case, however, this error has no further effect, 
as only the connecting elements have any further impact.

Table 1 Classification Results of the Puzzle-Assembly
Name Class Accuracy in %
Groundplate:1 Bearing 98.599
Puzzle1:1 Other 99.422
Puzzle2:1 Other 80.716
ISO 4762 M8 x 50:1 Screw 99.999
ISO 4762 M8 x 50:2 Screw 99.999
ISO 4762 M8 x 50:3 Screw 99.999
ISO 4762 M8 x 50:4 Screw 99.999
ISO 4762 M10 x 90:1 Screw 99.995
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The MAS can use this information and other 
information about position and directions to recognize 
patterns of connecting elements. This can be seen in Fig. 
10, which shows the updated block graph in the negative 
X direction with patterns. It can be seen that four of the 
screws are grouped as they point in one direction and lie 
on one plane. This indicates that they are assembled and 
disassembled in the same way.

Fig. 10. Block-Graph in -X of the Puzzle-Assembly 
with Patterns

The AIM is then generated from the block graphs, 
which represents the dependencies of the blocking 
individual parts in a matrix. The zero stands for no 
blocking and the one for blocking in the specified 
direction. The AIM is then transformed into the DAIM 
shown in Table 2. This matrix shows how many 
obstructions the respective individual part has in the 
specific directions. The generated matrices are used to 
generate the possible sequences for disassembly. If there 
is a zero, as in the DAIM shown, the component can be 
removed and then the AIM and DAIM must be updated 
for each removed component. This is carried out for each 
possibility (for each zero) and then visualized.

Table 2 DAIM of the Puzzle-Assembly with Patterns
-X -Y -Z X Y Z

A Groundplate:1 3 1 3 3 3 3

B ISO 4762 M10 x 90:1 3 3 0 3 2 2

C

ISO 4762 M8 x 50:1, 
ISO 4762 M8 x 50:2,
ISO 4762 M8 x 50:3, 
ISO 4762 M8 x 50:4

4 3 3 4 0 3

D Puzzle1:1 4 2 3 4 2 3

E Puzzle2:1 4 2 3 4 2 3

Fig. 11 shows a section of the assembly sequences 
described above. Starting from the assembly, the branches 
represent alternative disassembly paths and thus the zero 
in the DAIM. The boxes contain the components to be 
disassembled and the possible directions. At the same 
time, the assembly options can be read out by reversing 
the graph.

Fig. 11. Assembly-Sequences of the Puzzle-Assembly

The steps that the MAS goes through to find a solution 
are continuously documented, output and archived in a 
text file. An excerpt of this log is shown in Fig. 12. This 
shows that each agent logs its steps from the start, through 
information received, its processing, the forwarding of the 
information and the status reports to the manager agent. 
The MAS required 107.1 seconds for the entire process of 
examining this assembly.

Fig. 12. Excerpt of the Agent-Protocol

In addition to the assembly described in detail above, 
other models are tested. To facilitate comparison, the 
differences in the number of components and patterns, as 
well as the time required, the classification success rate 
and the external dimensions are summarized in Table 3.

Table 3 Distinguishing Features of Assemblies
Index 1 2
Assembly

Dimension [mm] 100x70x150 132x265x327
Parts 8 33
Patterns 1 3
Elements 5 24
Classification 7 of 8 23 of 33
Time [s] 107,1 3602,7

Index 3 4
Assembly

Dimension [mm] 40x37x80 100x51x150
Parts 4 17
Patterns 1 2
Elements 3 3
Classification 4 of 4 17 of 17
Time [s] 50,4 305,7

The comparison shows that assemblies with more 
individual components and more complex geometries 
require more time. This is to be expected due to the 
additional analyses of the individual components and the 
increased computational requirements of the intersection 
of colliding components. It is also noticeable that the 
assemblies that are minimized by pattern recognition 
require much less time. The advantage here lies in the 
faster sequence processing. However, the size of the 
assembly is also relevant, as longer paths lead to a higher 
number of iterations during interference analysis.  

The success rate for classifying simple parts is very 
good for the highly simplified model that was used. 
However, for more sophisticated components such as 
assembly 2, there is a clear need for improvements in this 
area. The model is designed exclusively for simple 
geometries and existing standard components.
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5. DISCUSSION
The program enables the automated detection of 

connections between individual parts in an assembly. To 
do this, a model is loaded into Autodesk Inventor via a 
GUI and is read out. In addition, an image classifier is 
used to detect connecting elements, which are then 
analyzed and combined using pattern recognition. The 
information is used to generate a liaison graph to visualize 
the connections and direction-dependent block graphs for 
component-dependent blocked (dis-)assembly paths. 

The AIM and DAIM, matrices that map the detected 
blockages, are derived from these graphs. Possible (dis-)
assembly sequences are extracted from the DAIM, the 
AIM and DAIM are updated and then visualized. The 
system was set up with BDI agents that communicate with 
each other and jointly lead to a solution. The GUI is used 
for simple input and clear output of the results. The results 
are also stored in a folder together with the agents' log. 

Simple and fast access is guaranteed for an overview 
and operation is made possible by a simple GUI. The 
system is easy to maintain and expand thanks to the 
division into individual agents. New functions can be 
easily implemented in the agents and the call can be 
realized via triggers in the ASL.

5.1. Interface Inventor

The PyWin32 library makes it easy to load and read 
the model in Autodesk Inventor. Unfortunately, the 
interface is quite slow with larger assemblies and 
components with complex shapes that require many 
connections of surfaces. Various internal Inventor 
functions are accessed in the work, which also operate via 
this interface. In addition, the interaction function offers a 
mapping of the interacting bodies, which often fails or 
takes more time with more complex geometries. It would 
be better to have a function that also checks the overlap, 
but only checks the overlap for required components, such 
as threads. Another point is the considered (dis-)assembly 
directions. These are currently limited to the six-axis
directions, but this excludes many assemblies. The axes 
and surface normals of individual components would have 
to be checked beforehand to automatically recognize the 
required directions. In addition, the patterns should be
included to save a double check and to analyze the 
complete pattern together. 

5.2. Part Recognition

Classification must be brought forward for this, which 
will not be a problem in terms of the process. This leads 
to a further point for improvement, even if the recognition 
of the threads of fasteners works well, the recognition of 
the correct class of elements is not yet fully developed. 
Many elements are very likely to be assigned to the wrong 
class. For a start, it shows a possibility to detect fasteners, 
but a larger and more secure database is required for this. 
In addition, a highly simplified model was used with the 
TensorFlow model. This means that a database with far 
more images is required, which depicts elements from 
different directions well and contains different resolutions 
and representations to include user-defined 
representations. On the other hand, other models and 
training methods need to be considered to look at the 

features in more detail. It is also possible to create a 
feature database and include additional parameters and 
geometric properties of the component in addition to the 
machining feature approach of Zhang et al. (2022).
Furthermore, the user can be consulted via a chat client,
comparable to the mentioned chamfer and fillet 
conversation from Plappert et al. (2023), if the assignment 
is not clear, e.g. via the accuracy value. This is possible by 
using agents that communicate via an XMPP server. Chat 
clients or other messaging programs can easily be 
included here. This can also be used for further inquiries 
regarding patterns or similar purposes. On the one hand, it 
is used for recognition, on the other hand, it enables the 
standardization of connection elements in the assembly.

5.3. Sequencing

The sequencing of the assemblies runs smoothly with 
smaller groups like the example assembly, but the 
previously mentioned errors have a major impact. All 
possible collision-free assembly sequences can be 
determined quickly with a combination of ‘assembly by 
disassembly’-approaches using liaison and block graphs
presented by Agrawal et al. (2014) and the DAIM of
Zhang et al. (2017). This is an advantage because you can 
easily translate the relations from the graph into the AIM.
At the moment, the paths still stop if there is no more zero 
in the DAIM. This means that the system does not solve
this branch. For further consideration, the user can be 
consulted for a solution or the system itself must find a 
way to find a solution for components that cannot be 
dismantled. In this case, it makes sense to first look at the 
connecting elements to check in advance whether the 
connections can be made possible by additional mounting 
openings or holes. The system could generate various 
solutions for this and coordinate them with the user. It is 
also very important to ensure that all components of the 
assembly can be integrated without collision. This may 
not only be in relation to a single axis, but also to a 
combination of axes. One possibility could be the use of 
path algorithms to run through all eventualities. In 
addition, sub-assemblies dependent on the installation 
space and assembly can be detected in this way, which can 
be considered individually and create time in the assembly 
field through parallel processes. Furthermore, algorithms 
for path verification can also be used to optimize assembly 
processes. A database of available machines, tools and 
assignments can be used to analyze the time and costs 
required. Accordingly, it would be possible to automate 
the process chain and optimize the process at the same 
time. However, the influences of the environment, e.g. 
gravity, are also important in these analyses; this has not 
yet been considered and will have a very large impact on 
larger and unwieldy components. Components could fall 
or tip over when the connecting elements are loosened. 
The investigation of support points is crucial to prevent 
damage, accidents, and simplify the assembly process.

5.4. Visualization and Documentation

Another important point is the documentation of the 
decision-making process. All decisions must be 
comprehensible and accessible to the user. To this end, the 
connections, blockades and sequences are displayed in 
graphs. The results show that the visualization works, but 
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quickly becomes confusing with larger assemblies. Neo4J 
is an option for working with graphs. It offers a browser 
for visualizing and searching graphs simultaneously. In 
this browser, the nodes are dynamic and can be moved and 
hidden as needed.

5.5. Agents

Agent systems represent the main potential in this 
work. By using multiple instances, the clarity of the 
system is improved and can be steered towards specific 
optimization goals (costs, time, etc.) by manipulating the 
agent's internal decision-making. In addition, it is very 
easy to expand the system by dividing it into smaller 
clusters of functions. New functions can simply be 
integrated into the agent or new agents can be created. The 
challenge here is coordinating the agents and functions 
with each other. Furthermore, outsourcing into smaller 
programs offers the possibility of parallelizing processes 
and functions; thus both utilizing computing memory and 
saving a lot of time. They provide the option to create a 
digital replica of a process line, allowing for simulating 
and optimizing workflows. It also integrates work 
processes into development, identifying and potentially 
resolving design errors before production, if necessary.

6. CONCLUSION AND FURTHER RESEARCH
Based on the need for assistance systems for 

developers, this work used the MaSE4D methodology to 
develop a MAS that automatically generates assembly 
sequences from a 3D assembly. 

The MaSE4D methodology was first presented to 
analyze system problems. Challenges in assembly
planning were discussed, leading to defined objectives 
and requirements for the system. The problem was then 
divided into different roles, elaborating on the structure of 
an agent, assembly analysis, and result-finding functions. 
Finally, the integration of the agents into the system was 
described.

To test the MAS, an assembly and the results of the 
system were presented and discussed. Furthermore, 
various features of tested assemblies were compared with 
each other. The discussion showed that the system 
achieves good results, but that there is still room for 
improvement in some areas. The system is clear and easy 
to expand, especially due to the same structure and the 
event called by the ASL. In addition, it was possible to 
read out the CAD assembly, analyze the relations between 
the components and classify them, as well as arrange them 
in patterns and detect blocking components. The relations
were successfully represented in graphs and transferred to 
the AIM and DAIM. With these matrices, it was possible 
to generate assembly sequences and also display them 
graphically.

Errors in the system were mainly due to 
misinterpretations during classification, which are 
attributable to the inadequate model. Furthermore, there is 
still room for improvement in the representation of the 
graphs due to the overlapping of nodes and edges in larger 
assemblies. And the most important point is the time 
required to find results. Especially for larger assemblies, 
the time increases exponentially due to the large number 
of connections and dependencies of the components. 

Nevertheless, the results show that this system has the 
potential to assist in the development process. Developers 
can identify and eliminate weak points in the assembly in 
the early stages of development without having to build a 
prototype and go through the assembly process. Even if 
there is still time to make improvements, the time and 
costs that the system can save are a real asset and relief in 
this area. At the same time, the system still offers many 
expansion options that can make the developers' work 
easier and make the processes safer, more cost-effective 
and situation-dependent.

The aim is therefore to further improve and expand 
this system. The analysis of the assembly via MAS must 
be further parallelized and additional information 
obtained from the CAD model. This information should 
be automatically enriched with further context-related 
information regarding production and assembly. This 
requires a well-structured data model. By integrating the 
machines, tools and process chains, the extent to which 
the system's development and production can be mapped 
by agents is checked. At the same time, the structure, 
coordination and communication of the agents is also an 
important development point. The agents must 
transparently demonstrate valid negotiation results, for 
which a solid communication network is required. Here, 
it is important to compare several approaches to how 
agents can discuss solutions among themselves to achieve 
an acceptable result for all parties.
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