
Abstract: With rising customization demands, optimizing
flexibility, productivity, and cost is essential. Traditional
specialized processes are time-consuming and costly,
especially when errors emerge during assembly. This
paper introduces a multi-agent system (MAS) for
automated assembly sequence generation. The system
combines and complements existing sequencing
approaches to allocate tasks to agents that analyze
Computer-Aided Design (CAD) models, assess relations
and dependencies, detect fasteners via image
classification and utilize a graph-based approach to
identify every potential assembly sequence. This
facilitates early problem detection and workflow
simplification for design engineers, ultimately enhancing
efficiency and reducing costs in the product development
cycle.
Key Words: Assembly Planning (AP), Graph-based,
Knowledge-based Engineering (KBE), Multi-Agent
System (MAS)

1. INTRODUCTION
Flexibility, productivity and cost optimization are

becoming increasingly important as the demand for
customization grows (Kumar, 2007). Specializing
development, manufacturing and assembly processes for
certain products requires time and expertise. To reduce the
workload and pressure on developers and designers, it is
necessary to optimize and support development and
planning processes. Errors in assembly processes that are
only discovered during assembly are particularly time-
consuming, as the root of the problem may already lie in
the requirements of the product and therefore the entire
development cycle has to be run through again. In
addition, the production and procurement of the individual
components have already resulted in a high-cost factor.
Digitalization in these areas allows early identification
and implementation of improvements in models and
processes (Chauhan et al., 2023). In addition, companies
can reduce development costs, shorten time-to-market and
improve the quality of their products through automated
and optimized processes.

This paper investigates the automated generation of
assembly sequences from a 3D-model using a MAS to
tackle the factors mentioned above. The agent system
offers the possibility to automatically divide work

packages into agents, to compare the processed
information with other agents and to recognize conflicts,
as well as to parallelize the processes (Jennings &
Wooldridge, 1995). The CAD model is read out with
different agents, the relations and dependencies of
individual components are examined and then stored in a
graph-based approach, which provides the possibility to
work out possible (dis-)assembly sequences. The result is
a scalable work simplification for the design engineers,
with early identification of possible assembly sequences
and potential problems. Therefore, multiple approaches
are divided into separated agents and then fused in a MAS
to figure out the possibilities of distributed systems in an
assembly path-finding process.

To describe the path to the evaluated system, the paper
is structured as follows: Section 2 presents the theoretical
background and related work on multi-agent systems and
automatic assembly planning. The methodological
approach is then described in Section 3. The approach of
a graph-based MAS for analyzing and subsequently
finding an assembly path is explained in section 4 using
an application example and discussed in section 5. A
summary and description of further research can be found
in Section 6.

2. THEORETICAL BACKGROUND AND
RELATED WORK

The search for a solution to the flood of information
has been an important area of research since the early
1990s. The possibility of collecting and processing data
from various databases with minimal human intervention
to solve a problem is still being sought and further
developed today (Borghoff & Schlichter, 1998; Chauhan
et al., 2023).

The approach of splitting a problem into very small
instances and then combining smaller programs to cover
certain parts of the problem and additionally to learn from
the processing cycle seems illusory at first. The first
approaches to adaptive and intelligent agents, which are
intended to support humans in almost all areas, laid the
foundations (Eymann, 2003). In general, the agent can be
described as a unit that generates an output from an input
by means of information processing and performs defined
tasks in the process (Ertel, 2016). The agents virtually
represent people or machines and act independently

GRAPH-BASED MULTI-AGENT
ANALYSIS OF COMPONENT ASSEMBLY

Christian Becker [0009-0001-7562-6329], Paul Christoph Gembarski [0000-0002-2642-3445],
Roland Lachmayer [0000-0002-3181-6323]

Leibniz University of Hanover, Institute of Product Development, Hanover, Germany

 11th International Conference on Customization and
Personalization MCP 2024
The Power of Customization and Personalization
in the Digital Age
September 25-26, 2024, Novi Sad, Serbia

23

within defined limits. They are therefore classified as
work facilitation and assistance for the user (Eymann,
2003).

In addition to the five main properties (observation,
autonomy, mobility, communication and intelligence)
described by Dostatni et al. (2013), according to Weyns
(2010), agents have three services for interacting with the
environment and accomplishing tasks. These include the
function/action service, the perception service (sensors)
and the communication service. With these services, the
agent is able to analyze the environment, develop
solutions and implement them. It also has an internal
knowledge memory in which data collected during the
process is stored.

Agents are generally classified as deliberative,
reactive and hybrid agents. Deliberative agents are
characterized by their explicitly representative database,
the continuous cycle of observing, deciding and acting, as
well as decision-making by inference. In contrast, reactive
agents are situational and only perceive the current status
of the environment and react directly to it (Eymann,
2003). The characteristics of these two classes are
combined in the hybrid approach. Behaviors, planning and
cooperation are divided into levels. This level model is
known as the InteRRaP architecture. Furthermore, the
agents have an internal knowledge base and an interface
to the environment, the so-called ‘world interface’
(Bussmann et al., 2004).

The BDI architecture by Geogeff and Rao (1992) is the
best-known approach for deliberative agents. The
architecture intends to implement mental properties and
thus a conscience for the agent. The properties
fundamentally include Beliefs, Desires and Intentions.
These are extended by Uncertainty. From this, the agent
can in turn derive and implement goals and plans
(Borghoff & Schlichter, 1998; Eymann, 2003).

These architectures have been integrated into
frameworks to simplify the programming of agent
systems. SPADE (Smart Python Agent Development
Environment) is a newer framework. The framework is
Python-based and enables agents to communicate easily
via XMPP, which also provides a simple interface to the
user via instant messages. It also supports asynchronous,
distributed and open systems. Since the framework was
developed in Python, there is a broad basis for expansion
and improvement, as Python is one of the most widely
used programming languages in the field of AI (Artificial
Intelligence), which is also supported by a large and active
community (Palanca et al., 2020). In addition, SPADE has
an extension option with spade-bdi, an implementation of
BDI agents that enables the reading and execution of ASL
files programmed in AgentSpeak via an interpreter. In this
file, plans can be defined in simplified language that
trigger belief changes and intentions in the agent using the
stored triggers (Palanca et al., 2022).

In the literature, MAS are mainly used for path
optimization and robot coordination in the assembly
process to avoid collisions and find alternative assembly
paths, due to the simple formalization of rules
(Gembarski, 2020). There is no direct approach to CAD
assemblies for assembly capability and the direct
derivation of assembly sequences. Nevertheless, there are
MAS approaches in design support and feature

recognition. Chu et al. (2009) use a MAS to enable
geographically separated work groups to work
synchronously and to hide certain model details
depending on the user's responsibilities. Another approach
uses feature recognition agents for automatic adaptation to
new situations (Fougères & Ostrosi, 2018). A similar
adaptation is used by Plappert et al. (2023) in the course
of the manufacturing restrictions of milling constructions
resulting from feature recognition from graph-based
methods for the automatic adaptation of individual CAD
parts. They also present a possibility to communicate with
the MAS through XMPP to check the need for chamfers
and fillets in the CAD model.

For the most part, these approaches relate to individual
parts, while assembly takes the models one level higher.
Here, it is not only the relationships between individual
surfaces and edges that are important, but also the
relationships beyond the component. This implies
contacting surfaces and functions of the individual
surfaces and components. The ‘assembly by disassembly’
method is an important procedure for determining the
assembly sequence. With its help, sequences and
problems during assembly and disassembly can be easily
detected by removing individual parts from an assembly
piece by piece. The approach shows directly if the
component is blocked or possible to disassemble by
iterating different ways out of the assembly. In reverse, it
is an indication of whether it can be assembled.
Nevertheless, this method is very time-consuming due to
the iteration of all possibilities. Ghandi and Masehian
(2015) present five main categories of compiled methods
for assembly planning. These include grid-based, graph-
based, sampling-based methods, spatial decompositions
and interactive approaches.

The grid-based and graph-based methods discretize a
search space by reducing the action space with subspaces.
The graph-based methods use a model of nodes together
with weighted and directed connections to visualize
relationships between components. This can be used to
examine contact points or blocked paths in assemblies.
For example, Belhadj et al. (2016) use this approach to
find sub-assemblies with liaison graphs and Agrawal et al.
(2014) use liaison and block graphs to detect collision-free
assembly paths. Spatial partitioning is also used in other
approaches to simplify the workspace. This is done by
filtering processing or movement directions or by finding
action spaces. Zhang et al. (2017) use the possible
disassembly directions to set up interference matrices. The
matrices can then be evaluated to check which component
is blocked in which direction during disassembly. By
comparing all directions and the number of interferences,
a possible (dis-)assembly sequence can be found.

Based on the theoretical background and the related
work of MAS and assembly path-finding, a MAS for
automated assembly path-finding with graph-based
methods is investigated as there is no approach in the
literature. The system is designed to combine the
advantages of distributed and graph-based assembly path
planning solutions in a multi-agent system to save costs
and time by alerting developers to further problems at an
early stage and suggesting reliable solutions. The field of
application is product development, with regard to a
design review for the evaluation of assembly feasibility.

24

The following research questions were identified for the
investigation:

How are assemblies and the links between
individual components structured in a CAD
model, and how can information be extracted
from a 3D assembly via an interface to the
CAD system, processed and displayed in a
graph-based manner?

Which roles and agents are relevant in the
process of finding assembly sequences, what
problems or opportunities arise from their
communication, and is a multi-agent system
(MAS) suitable for the creation of assembly
sequences?

3. METHODOLOGICAL PROCEDURE
Methods of the design process are used to support the

analysis and construction of the system. In the following,
the Multiagent Systems Engineering for Engineering
Design (MaSE4D) method shown in Fig. 1 is presented,
which is based on the MaSE method by Deloach et al.
(2001) with elements of ROADMAP (Plappert, 2023).
MaSE was developed specifically for heterogeneous MAS
to create distributed, intelligent and robust applications. It
covers the entire life cycle and provides an insight into the
details of the system using the Unified Modelling
Language (UML). This is intended to make
communication and cooperation between agents simpler
and more transparent (Deloach et al., 2001).

The opposing triangles in the background represent the
level of detail, from the broad system context to the inner
knowledge model and then back to the outer overall
system (Plappert, 2023).

The method is divided into the analysis and design
phases. In the analysis phase, goals are first defined to
generate use cases and consequently derive roles. This is
achieved in two stages (Deloach et al., 2001; Plappert,
2023):

Develop use cases: Extracting and structuring
system objectives from the requirements,
visualized in a hierarchy diagram. Translating the
objectives into use cases using various scenarios.
Visualization and detailing in a use case diagram.

Refine roles: Assign tasks to specific roles,
organize them in a role model and depict the
processing and dependencies in an interaction
model.

The design phase translates the previously defined
roles and goals into agents, a communication network and
the final system. This phase consists of the following four
levels (Deloach et al., 2001; Plappert, 2023):

VI Operational: Develop the required knowledge
and identify communication protocols.

III Agents: Derive agent classes from the roles that
have functions to fulfill their roles. A class
diagram is created from this.

II Management: Graphically visualizes the
communication between agents in the form of
state machines or sequence diagrams. It should be

noted that some tasks require communication with
several agents and that a higher-level location is
useful for better organization. Based on this,
create an arbitrary architecture of the agents using
UML components.

I Users: Determine the final configuration (types
and number of agents, platform, interfaces) and
structure of the system, documented in a structure
diagram. Subsequent implementation and testing
by the users in the system context.

Fig. 1. MaSE4D-Phases according to Plappert
(Plappert, 2023)

4. ASSEMBLY ANALYSIS WITH MULTI-AGENT
SYSTEMS

4.1. Specification

The basic objectives of a support system are speed,
ease of use and broad applicability, as well as robust
solution finding and detailed documentation. To achieve
these goals, target groups, application areas, company
structures and possible inputs and outputs must first be
analyzed.

In this case, a system is set up for the development or
construction of an assembly. This implies that the
realization of a concept in a 3D model does not mark the
end of the development. The subsequent process steps are
important instances for assessing the manufacturability
and usability of the product. It therefore makes sense to
integrate the planning, production and assembly cycles
into the development process to recognise and eliminate
problems at an early stage.

The solution is to provide engineers with applications
that simplify their daily tasks and share some of their
responsibilities. A key area is communication within the
product life cycle, which often involves multiple expert
opinions and can lead to misunderstandings, errors, or
safety issues. Each change requires time-consuming
validation or simulation loops, and some problems only
become apparent during work or production planning.
These challenges drive the development of tools that
enhance safety, predictability, and integration into one

25

application. This application would simulate and compare
databases to identify design issues, safety concerns, and
guideline breaches, and facilitate communication with
relevant departments. The system would log processes for
transparency and traceability. When assembling modules,
the design must consider restrictions from available
machines, tools, and assembly structures, requiring the
definition of use cases and roles.

Fig. 2 shows the use cases of the system. The user
selects an assembly to be examined, which is read out by
agents that also recognize connecting elements and
patterns in the individual parts and use the relationships
between the individual parts to show possible assembly
sequences, visualize the results and then store them for
documentation.

Fig. 2. Use-Case diagram

These use cases result in the roles and their
dependencies shown in Fig. 3. On the one hand, the
subdivision serves to subdivide areas so that areas of
responsibility can be separated from each other and, on the
other hand, to enable individual processes to be
parallelized to save time and utilize computing power.

Fig. 3. Examined Roles

The master role is assumed by the manager, which is
started via a Graphical User Interface (GUI), monitors the
system and distributes the overall problem to subordinate
instances. Such a structure enables better and simpler
coordination of the agents and tasks. The Inventor role,
which forms the interface to the CAD system and extracts
the necessary information from the model, is subordinate.
This role is separated to avoid overlapping access to the
model. Furthermore, the pattern role attempts to find
patterns in the individual parts to simplify the overall
structure. The classification role is responsible for
assigning certain classes to the individual parts to
differentiate their use. This role is well suited to
parallelization due to the consideration of individual
components without reference to the assembly. For this
reason, this task is separated into a role and reserved for
the use of runtime-generated agents. The sequence role
creates possible assembly sequences and the results are
then visualized by the graph role. Outsourcing the creation
of the graph makes it possible to prioritize the subsequent
processes. The graph is largely used for sequence

determination at the end of the process and can therefore
operate in parallel with the other tasks. Furthermore, it is
responsible for visualization in an image format, which is
also only required for later archiving. Other agent results
are stored directly in a results folder for archiving.

4.2. Architecture

The next step is to define the individual agents. The
architecture of an agent is presented first. As shown in Fig.
4, the agent is programmed in Python using a MAS
framework named SPADE (Palanca et al., 2022). This
already has predefined agent classes, which are extended
with the BDI approach using the spade-bdi library.

Fig. 4. Architecture of an Agent according to
(Plappert et al., 2022)

Each agent has five modules (Plappert, 2023):

Sensors: Form the interface to the CAD-model
and external influences by extracting information
from the environment.

Inference-Machine: The agent's brain, collects the
incoming information and generates solutions
according to its beliefs and intentions to achieve
the desires and goals.

Knowledge-Modul: The knowledge module
manages external databases like thread-tables and
stored graphs by extracting information from
them or expanding them with the knowledge
acquired during processing.

Communication-Modul: The module uses an
XMPP server to communicate and share acquired
knowledge with other agents. Performatives
defined by FIPA are used to categorize the
intention of the message.

Action-Modul: Once a solution has been found, it
can be implemented in the environment or saved
in a desired output using the action module.

In addition, each agent has an ASL file in which goals,
intentions and desires are defined and the agent's beliefs
are described and manipulated. The language AgentSpeak
is used in the ASL file. This is a simple programming
language that executes functions with trigger events. In
the BDI view, the triggers are belief changes, goal
realizations or test goals. However, belief changes in the
ASL can also be triggered directly in the ASL.

4.3. Implementation

The basic task of an agent is to generate a possible
output from an input. To achieve this, the agent must
independently gather information and process it. This
includes information or knowledge from databases,

26

opinions from users or other agents and, most importantly
in the context of this work, information from the CAD
assembly. This includes points, edges, surfaces and their
relationships to each other. These are the properties that
B-Rep and possibly CSG represent. (Stroud, 2011).
Furthermore, the relationship of these structures and their
dependencies between individual parts is also crucial.

Fig. 5. Activity diagram of the agents for finding
assembly sequences

Therefore, the most important instance in this system
is the reading of the CAD model. The agents have to
generate an image of the assembly themselves from the
information read out and adapt it if necessary. The
obstacle is the Python interface to Autodesk Inventor, as
Inventor is designed for the ‘Visual Basics for
Application’ (VBA) programming language and is
therefore a Windows-based application. A VBA editor is
therefore also implemented in Inventor (Ekins, 2007).

The Python library ‘PyWin32’ enables access to the
‘Windows Application Programming Interface’ (API) and
thus to the API Object Model implemented in Inventor. It
is important to address the correct class type when
reading. By default, the ‘Object’ type is accessed, but this
does not have all the attributes that the ‘Edge’ type has,
for example. Here the Win32 library also contains a
‘CastTo()’ function, which assigns a new class type to a
previously declared path. The entire structure and
properties of the model can be read out using the interface
created. Other object libraries can also be integrated via
Python, such as ‘Scripting’ or ‘mscorlib’, which can
retrieve objects from Windows libraries. This makes it
possible to use Windows-based dictionaries and array
lists. This is particularly important when accessing VBA

functions via Python, as these only accept predefined
object types that differ from the Python-based types.

In the following, the MAS is built up from the
extracted roles, access to the 3D model and other
functions for examining the model. The process and
communication are also described here. To make it easier
to follow the program flow is shown in Fig. 5 and the flow
of information is visualised in Fig. 6.

Fig. 6. Information exchange between the different
roles

When the program is started by the user, a GUI
appears in which the user can select the assembly to be
examined. In addition, the interface has a status display to
show the current progress of the program and also the
status of the agents used. This status display is
continuously updated by the manager agent as soon as an
agent changes its status.

When an assembly is selected and the 'Get Started'
button is pressed, the MAS starts. First, the manager agent
is started by transferring the assembly path. This then
starts the Graph, Inventor, Pattern and Sequence agents
with the help of an integrated behavior for starting other
agents.

Once the Inventor agent has started successfully, the
Manager agent sends it the path of the assembly to be
examined. With this path, the Inventor agent opens the
respective assembly in Autodesk Inventor and starts to
extract information from the model. First, a screenshot of
the assembly is created for the archive. The agent then
reads existing connections between the individual parts it
contains. The collected individual parts are then
forwarded to the Manager agent and the connections to the
Graph agent.

The Inventor agent also reads a stored thread table.
With this table, the agent can recognize threads when
querying blocked paths and thus treat these affected areas
accordingly. After processing, the function described
above returns a dictionary with threads and the
relationships of blocked individual parts. This dictionary
is then forwarded to the Graph agent.

The Graph agent uses the connections to create a
liaison graph, which shows the connection between the
individual parts, and a block graph for each direction,
which shows the parts blocked by the components. The
Python package ‘networkx’ is used to translate the list of
connections into a graph type. This graph is then plotted
in a PNG file using the ‘matplotlib’ library. The block
graphs are also converted into directed graphs and plotted
using these packages. The block matrices generated when
the graphs are created are then sent to the Sequence agent.
At the same time, the Manager agent creates a

27

Classification agent for each individual part using the
individual part dictionary.

The Classification agent creates a screenshot with the
respective file path of the individual part. This image is
analyzed with the previously trained image classifier with
TensorFlow and assigned to a class, e.g. screws or
washers. The classes and the accuracy are transferred to
the Manager agent and the Classification agents can log
off.

Once all individual parts have been classified, the
Manager agent forwards the individual part dictionary to
the Pattern agent. The Pattern agent searches for patterns
of connecting elements in the individual parts using the
function described above, which simplifies the further
procedure. The results are then passed to the Manager
agent, which implements them in the parts dictionary and
forwards them to the Graph agent.

The Graph agent integrates the patterns into the
already created graphs and merges several nodes and
adopts their connections. The results are in turn exported
to PNG files and the new matrices of the block graphs are
transferred to the Sequence agent.

As soon as the Sequence agent has received the
matrices, it creates the AIM (Assembly Interference
Matrix) and DAIM (Directional Assembly Interference
Matrix) from these matrices, both for the individual parts
and for those with patterns. These are further processed
with the sequence check, sequence paths are generated
and the matrices are regenerated. The resulting AIMs are
saved for the individual parts and matrices with patterns
and the resulting dictionary is sent to the Graph agent.

The Graph agent creates a diagram from the sequence
dictionary, which is exported in a PNG format. This
makes it easy to trace the dis- and assembly sequences.

After all agents have changed their status to ‘Done’,
the Manager agent collects the results and a new tab with
the results appears in the GUI. The time required is also
displayed in the status field.

4.4. Application Results

To better explain and show the functions of the MAS,
a puzzle assembly as shown in Fig. 7 is used as an
illustrative example. The assembly consists of a base
plate, two interlocking puzzle pieces and five screws that
connect these elements. In addition, the base plate has an
edge that prevents the puzzle pieces from slipping without
being screwed together.

Fig. 7. Example Puzzle-Assembly

The assembly is loaded into the system via the GUI
and then opened in Autodesk Inventor. The connections
and blocked assembly paths are read out here. These are
translated directly into the liaison graph and direction-

dependent block graphs shown in Fig. 8. In this case, the
liaison graph is very clear and depicts the existing
connections between the individual parts with the help of
a line between the respective nodes.

Fig. 8. Liaison-Graph of the Puzzle-Assembly

The block graphs are created for six mounting
directions predefined in the program. It is important to
note that the arrow represents ‘...is blocked by...’. An
example of these block graphs is shown in Fig. 9. The
graph shows the blocking components in the negative X
direction. It can be seen, for example, that the component
‘Puzzle1:1’ blocks the screw ‘ISO 4762 M8 x 50:2’ in this
direction, but the screw also blocks the component. The
situation is different between the screws ‘ISO 4762 M8 x
50:1’ and ‘ISO 4762 M8 x 50:2’, here only the first is
blocked by the second.

Fig. 9. Block-Graph in -X of the Puzzle-Assembly

To improve the overview of the graphs and save time,
patterns of fasteners are searched for in the assemblies. To
do this, all components are first classified by creating
screenshots of the individual parts and assigning them to
predefined classes using an image classifier. The results
of the classification are shown in Table 1. It can be seen
here that the screws are assigned to the correct class with
a very high accuracy of almost 100%. The puzzle pieces
are also assigned to the correct class. Only the
Groundplate is not classified correctly, as the image
classifier looks for similarities in the color pixel pattern of
the training data and the images of the bearings fit better
here. In this case, however, this error has no further effect,
as only the connecting elements have any further impact.

Table 1 Classification Results of the Puzzle-Assembly
Name Class Accuracy in %
Groundplate:1 Bearing 98.599
Puzzle1:1 Other 99.422
Puzzle2:1 Other 80.716
ISO 4762 M8 x 50:1 Screw 99.999
ISO 4762 M8 x 50:2 Screw 99.999
ISO 4762 M8 x 50:3 Screw 99.999
ISO 4762 M8 x 50:4 Screw 99.999
ISO 4762 M10 x 90:1 Screw 99.995

28

The MAS can use this information and other
information about position and directions to recognize
patterns of connecting elements. This can be seen in Fig.
10, which shows the updated block graph in the negative
X direction with patterns. It can be seen that four of the
screws are grouped as they point in one direction and lie
on one plane. This indicates that they are assembled and
disassembled in the same way.

Fig. 10. Block-Graph in -X of the Puzzle-Assembly
with Patterns

The AIM is then generated from the block graphs,
which represents the dependencies of the blocking
individual parts in a matrix. The zero stands for no
blocking and the one for blocking in the specified
direction. The AIM is then transformed into the DAIM
shown in Table 2. This matrix shows how many
obstructions the respective individual part has in the
specific directions. The generated matrices are used to
generate the possible sequences for disassembly. If there
is a zero, as in the DAIM shown, the component can be
removed and then the AIM and DAIM must be updated
for each removed component. This is carried out for each
possibility (for each zero) and then visualized.

Table 2 DAIM of the Puzzle-Assembly with Patterns
-X -Y -Z X Y Z

A Groundplate:1 3 1 3 3 3 3

B ISO 4762 M10 x 90:1 3 3 0 3 2 2

C

ISO 4762 M8 x 50:1,
ISO 4762 M8 x 50:2,
ISO 4762 M8 x 50:3,
ISO 4762 M8 x 50:4

4 3 3 4 0 3

D Puzzle1:1 4 2 3 4 2 3

E Puzzle2:1 4 2 3 4 2 3

Fig. 11 shows a section of the assembly sequences
described above. Starting from the assembly, the branches
represent alternative disassembly paths and thus the zero
in the DAIM. The boxes contain the components to be
disassembled and the possible directions. At the same
time, the assembly options can be read out by reversing
the graph.

Fig. 11. Assembly-Sequences of the Puzzle-Assembly

The steps that the MAS goes through to find a solution
are continuously documented, output and archived in a
text file. An excerpt of this log is shown in Fig. 12. This
shows that each agent logs its steps from the start, through
information received, its processing, the forwarding of the
information and the status reports to the manager agent.
The MAS required 107.1 seconds for the entire process of
examining this assembly.

Fig. 12. Excerpt of the Agent-Protocol

In addition to the assembly described in detail above,
other models are tested. To facilitate comparison, the
differences in the number of components and patterns, as
well as the time required, the classification success rate
and the external dimensions are summarized in Table 3.

Table 3 Distinguishing Features of Assemblies
Index 1 2
Assembly

Dimension [mm] 100x70x150 132x265x327
Parts 8 33
Patterns 1 3
Elements 5 24
Classification 7 of 8 23 of 33
Time [s] 107,1 3602,7

Index 3 4
Assembly

Dimension [mm] 40x37x80 100x51x150
Parts 4 17
Patterns 1 2
Elements 3 3
Classification 4 of 4 17 of 17
Time [s] 50,4 305,7

The comparison shows that assemblies with more
individual components and more complex geometries
require more time. This is to be expected due to the
additional analyses of the individual components and the
increased computational requirements of the intersection
of colliding components. It is also noticeable that the
assemblies that are minimized by pattern recognition
require much less time. The advantage here lies in the
faster sequence processing. However, the size of the
assembly is also relevant, as longer paths lead to a higher
number of iterations during interference analysis.

The success rate for classifying simple parts is very
good for the highly simplified model that was used.
However, for more sophisticated components such as
assembly 2, there is a clear need for improvements in this
area. The model is designed exclusively for simple
geometries and existing standard components.

29

5. DISCUSSION
The program enables the automated detection of

connections between individual parts in an assembly. To
do this, a model is loaded into Autodesk Inventor via a
GUI and is read out. In addition, an image classifier is
used to detect connecting elements, which are then
analyzed and combined using pattern recognition. The
information is used to generate a liaison graph to visualize
the connections and direction-dependent block graphs for
component-dependent blocked (dis-)assembly paths.

The AIM and DAIM, matrices that map the detected
blockages, are derived from these graphs. Possible (dis-)
assembly sequences are extracted from the DAIM, the
AIM and DAIM are updated and then visualized. The
system was set up with BDI agents that communicate with
each other and jointly lead to a solution. The GUI is used
for simple input and clear output of the results. The results
are also stored in a folder together with the agents' log.

Simple and fast access is guaranteed for an overview
and operation is made possible by a simple GUI. The
system is easy to maintain and expand thanks to the
division into individual agents. New functions can be
easily implemented in the agents and the call can be
realized via triggers in the ASL.

5.1. Interface Inventor

The PyWin32 library makes it easy to load and read
the model in Autodesk Inventor. Unfortunately, the
interface is quite slow with larger assemblies and
components with complex shapes that require many
connections of surfaces. Various internal Inventor
functions are accessed in the work, which also operate via
this interface. In addition, the interaction function offers a
mapping of the interacting bodies, which often fails or
takes more time with more complex geometries. It would
be better to have a function that also checks the overlap,
but only checks the overlap for required components, such
as threads. Another point is the considered (dis-)assembly
directions. These are currently limited to the six-axis
directions, but this excludes many assemblies. The axes
and surface normals of individual components would have
to be checked beforehand to automatically recognize the
required directions. In addition, the patterns should be
included to save a double check and to analyze the
complete pattern together.

5.2. Part Recognition

Classification must be brought forward for this, which
will not be a problem in terms of the process. This leads
to a further point for improvement, even if the recognition
of the threads of fasteners works well, the recognition of
the correct class of elements is not yet fully developed.
Many elements are very likely to be assigned to the wrong
class. For a start, it shows a possibility to detect fasteners,
but a larger and more secure database is required for this.
In addition, a highly simplified model was used with the
TensorFlow model. This means that a database with far
more images is required, which depicts elements from
different directions well and contains different resolutions
and representations to include user-defined
representations. On the other hand, other models and
training methods need to be considered to look at the

features in more detail. It is also possible to create a
feature database and include additional parameters and
geometric properties of the component in addition to the
machining feature approach of Zhang et al. (2022).
Furthermore, the user can be consulted via a chat client,
comparable to the mentioned chamfer and fillet
conversation from Plappert et al. (2023), if the assignment
is not clear, e.g. via the accuracy value. This is possible by
using agents that communicate via an XMPP server. Chat
clients or other messaging programs can easily be
included here. This can also be used for further inquiries
regarding patterns or similar purposes. On the one hand, it
is used for recognition, on the other hand, it enables the
standardization of connection elements in the assembly.

5.3. Sequencing

The sequencing of the assemblies runs smoothly with
smaller groups like the example assembly, but the
previously mentioned errors have a major impact. All
possible collision-free assembly sequences can be
determined quickly with a combination of ‘assembly by
disassembly’-approaches using liaison and block graphs
presented by Agrawal et al. (2014) and the DAIM of
Zhang et al. (2017). This is an advantage because you can
easily translate the relations from the graph into the AIM.
At the moment, the paths still stop if there is no more zero
in the DAIM. This means that the system does not solve
this branch. For further consideration, the user can be
consulted for a solution or the system itself must find a
way to find a solution for components that cannot be
dismantled. In this case, it makes sense to first look at the
connecting elements to check in advance whether the
connections can be made possible by additional mounting
openings or holes. The system could generate various
solutions for this and coordinate them with the user. It is
also very important to ensure that all components of the
assembly can be integrated without collision. This may
not only be in relation to a single axis, but also to a
combination of axes. One possibility could be the use of
path algorithms to run through all eventualities. In
addition, sub-assemblies dependent on the installation
space and assembly can be detected in this way, which can
be considered individually and create time in the assembly
field through parallel processes. Furthermore, algorithms
for path verification can also be used to optimize assembly
processes. A database of available machines, tools and
assignments can be used to analyze the time and costs
required. Accordingly, it would be possible to automate
the process chain and optimize the process at the same
time. However, the influences of the environment, e.g.
gravity, are also important in these analyses; this has not
yet been considered and will have a very large impact on
larger and unwieldy components. Components could fall
or tip over when the connecting elements are loosened.
The investigation of support points is crucial to prevent
damage, accidents, and simplify the assembly process.

5.4. Visualization and Documentation

Another important point is the documentation of the
decision-making process. All decisions must be
comprehensible and accessible to the user. To this end, the
connections, blockades and sequences are displayed in
graphs. The results show that the visualization works, but

30

quickly becomes confusing with larger assemblies. Neo4J
is an option for working with graphs. It offers a browser
for visualizing and searching graphs simultaneously. In
this browser, the nodes are dynamic and can be moved and
hidden as needed.

5.5. Agents

Agent systems represent the main potential in this
work. By using multiple instances, the clarity of the
system is improved and can be steered towards specific
optimization goals (costs, time, etc.) by manipulating the
agent's internal decision-making. In addition, it is very
easy to expand the system by dividing it into smaller
clusters of functions. New functions can simply be
integrated into the agent or new agents can be created. The
challenge here is coordinating the agents and functions
with each other. Furthermore, outsourcing into smaller
programs offers the possibility of parallelizing processes
and functions; thus both utilizing computing memory and
saving a lot of time. They provide the option to create a
digital replica of a process line, allowing for simulating
and optimizing workflows. It also integrates work
processes into development, identifying and potentially
resolving design errors before production, if necessary.

6. CONCLUSION AND FURTHER RESEARCH
Based on the need for assistance systems for

developers, this work used the MaSE4D methodology to
develop a MAS that automatically generates assembly
sequences from a 3D assembly.

The MaSE4D methodology was first presented to
analyze system problems. Challenges in assembly
planning were discussed, leading to defined objectives
and requirements for the system. The problem was then
divided into different roles, elaborating on the structure of
an agent, assembly analysis, and result-finding functions.
Finally, the integration of the agents into the system was
described.

To test the MAS, an assembly and the results of the
system were presented and discussed. Furthermore,
various features of tested assemblies were compared with
each other. The discussion showed that the system
achieves good results, but that there is still room for
improvement in some areas. The system is clear and easy
to expand, especially due to the same structure and the
event called by the ASL. In addition, it was possible to
read out the CAD assembly, analyze the relations between
the components and classify them, as well as arrange them
in patterns and detect blocking components. The relations
were successfully represented in graphs and transferred to
the AIM and DAIM. With these matrices, it was possible
to generate assembly sequences and also display them
graphically.

Errors in the system were mainly due to
misinterpretations during classification, which are
attributable to the inadequate model. Furthermore, there is
still room for improvement in the representation of the
graphs due to the overlapping of nodes and edges in larger
assemblies. And the most important point is the time
required to find results. Especially for larger assemblies,
the time increases exponentially due to the large number
of connections and dependencies of the components.

Nevertheless, the results show that this system has the
potential to assist in the development process. Developers
can identify and eliminate weak points in the assembly in
the early stages of development without having to build a
prototype and go through the assembly process. Even if
there is still time to make improvements, the time and
costs that the system can save are a real asset and relief in
this area. At the same time, the system still offers many
expansion options that can make the developers' work
easier and make the processes safer, more cost-effective
and situation-dependent.

The aim is therefore to further improve and expand
this system. The analysis of the assembly via MAS must
be further parallelized and additional information
obtained from the CAD model. This information should
be automatically enriched with further context-related
information regarding production and assembly. This
requires a well-structured data model. By integrating the
machines, tools and process chains, the extent to which
the system's development and production can be mapped
by agents is checked. At the same time, the structure,
coordination and communication of the agents is also an
important development point. The agents must
transparently demonstrate valid negotiation results, for
which a solid communication network is required. Here,
it is important to compare several approaches to how
agents can discuss solutions among themselves to achieve
an acceptable result for all parties.

7. REFERENCES
Agrawal, D., Kumara, S. & Finke, D.A. (2014)
Automated Assembly Sequence Planning and
Subassembly Detection. In: 64th annual conference and
expo of the Institute of Industrial Engineers 2014:
Montreal, Canada, 31 May - 3 June 2014. Curran: Red
Hook, NY, pp. 781–788.

Belhadj, I., Trigui, M. & Benamara, A. (2016)
Subassembly generation algorithm from a CAD model.
The International Journal of Advanced Manufacturing
Technology, 87(9-12), 2829–2840. Available from:
https://doi.org/10.1007/s00170-016-8637-x.

Borghoff, U.M. & Schlichter, J.H. (1998)
Agentensysteme. In: Borghoff, U.M. & Schlichter, J.H.
(Eds.) Rechnergestützte Gruppenarbeit. Springer Berlin
Heidelberg: Berlin, Heidelberg, pp. 439–509.

Bussmann, S., Ishida, T., Jennings, N.R., Sycara, K. &
Wooldridge, M. (2004) Multiagent Systems for
Manufacturing Control. Springer Berlin Heidelberg:
Berlin, Heidelberg.

Chauhan, S., Singh, R., Gehlot, A., Akram, S.V., Twala,
B. & Priyadarshi, N. (2023) Digitalization of Supply
Chain Management with Industry 4.0 Enabling
Technologies: A Sustainable Perspective. Processes,
11(1), 96. Available from:
https://doi.org/10.3390/pr11010096.

Chu, C.-H., Wu, P.-H. & Hsu, Y.-C. (2009) Multi-agent
collaborative 3D design with geometric model at different
levels of detail. Robotics and Computer-Integrated
Manufacturing, 25(2), 334–347. Available from:
https://doi.org/10.1016/j.rcim.2007.01.005.

31

Deloach, S.A., Wood, M.F. & Sparkman, C.H. (2001)
Multiagent systems engineering. International Journal of
Software Engineering and Knowledge Engineering,
11(03), 231–258. Available from:
https://doi.org/10.1142/S0218194001000542.

Dostatni, E., Diakun, J., Hamrol, A. & Mazur, W. (2013)
Application of agent technology for recycling‐oriented
product assessment. Industrial Management & Data
Systems, 113(6), 817–839. Available from:
https://doi.org/10.1108/IMDS-02-2013-0062.

Ekins, B. (2007) Unleashing Hidden Powers of Inventor
with the API Part 1 of 4: Getting Started with Inventor
VBA - “Hello Inventor!”. Available from: https://
download.autodesk.com/us/community/mfg/part_1.pdf
[Accessed 22 December 2022].

Ertel, W. (2016) Grundkurs Künstliche Intelligenz.
Springer Fachmedien Wiesbaden: Wiesbaden.

Eymann, T. (2003) Digitale Geschäftsagenten. Springer
Berlin Heidelberg: Berlin, Heidelberg.

Fougères, A.-J. & Ostrosi, E. (2018) Intelligent agents for
feature modelling in computer aided design. Journal of
Computational Design and Engineering, 5(1), 19–40.
Available from:
https://doi.org/10.1016/j.jcde.2017.11.001.

Gembarski, P.C. (2020) Agent Collaboration in a Multi-
Agent-System for Analysis and Optimization of
Mechanical Engineering Parts. Procedia Computer
Science, 176, 592–601. Available from:
https://doi.org/10.1016/j.procs.2020.08.061.

Georgeff, M.P. & Rao, A.S. (1992) An Abstract
Architecture for Rational Agents. In: International
Conference on Principles of Knowledge Representation
and Reasoning.

Ghandi, S. & Masehian, E. (2015) Review and
taxonomies of assembly and disassembly path planning
problems and approaches. Computer-Aided Design, 67-
68, 58–86. Available from:
https://doi.org/10.1016/j.cad.2015.05.001.

Jennings, N.R. & Wooldridge, M. (1995) Applying agent
technology. Applied Artificial Intelligence, 9(4), 357–369.
Available from:
https://doi.org/10.1080/08839519508945480.

Kumar, A. (2007) From mass customization to mass
personalization: a strategic transformation. International
Journal of Flexible Manufacturing Systems, 19(4), 533–
547. Available from: https://doi.org/10.1007/s10696-008-
9048-6.

Palanca, J., Rincon, J., Carrascosa, C., Julian, V. &
Terrasa, A. (2022) A Flexible Agent Architecture in
SPADE. In: Dignum, F., Mathieu, P., Corchado, J.M. &
La Prieta, F. de (Eds.) Advances in Practical Applications
of Agents, Multi-Agent Systems, and Complex Systems
Simulation. The PAAMS Collection. Springer
International Publishing: Cham, pp. 320–331.

Palanca, J., Terrasa, A., Julian, V. & Carrascosa, C. (2020)
SPADE 3: Supporting the New Generation of Multi-
Agent Systems. IEEE Access, 8, 182537–182549.

Available from:
https://doi.org/10.1109/ACCESS.2020.3027357.

Plappert, S. (2023) Wissensbasierte Entwurfsbewertung
der Produktgestalt mittels Multi-Agentensystemen.
Available from: https://doi.org/10.15488/14018.

Plappert, S., Becker, C., Gembarski, P.C. & Lachmayer,
R. (2022) Feasibility Evaluation of Milling Designs Using
Multi-Agent Systems. Proceedings of the Design Society,
2, 763–772. Available from:
https://doi.org/10.1017/pds.2022.78.

Plappert, S., Becker, C., Gembarski, P.C. & Lachmayer,
R. (2023) Scalable BDI-based Multi-Agent System for
Digital Design Reviews. Procedia Computer Science,
225, 3593–3602. Available from:
https://doi.org/10.1016/j.procs.2023.10.354.

Stroud, I. (2011) Solid Modelling and CAD Systems: How
to Survive a CAD System. Springer-Verlag London
Limited: London.

Weyns, D. (2010) Architecture-Based Design of Multi-
Agent Systems. Springer Berlin Heidelberg: Berlin,
Heidelberg.

Zhang, H., Zhang, S., Zhang, Y., Liang, J. & Wang, Z.
(2022) Machining feature recognition based on a novel
multi-task deep learning network. Robotics and
Computer-Integrated Manufacturing, 77, 102369.
Available from:
https://doi.org/10.1016/j.rcim.2022.102369.

Zhang, W., Ma, M., Li, H. & Yu, J. (2017) Generating
interference matrices for automatic assembly sequence
planning. The International Journal of Advanced
Manufacturing Technology, 90(1-4), 1187–1201.
Available from: https://doi.org/10.1007/s00170-016-
9410-x.

CORRESPONDENCE

Christian Becker, M.Sc.
Leibniz University of Hanover
Institute of Product Development
An der Universität 1
30823 Garbsen, Germany
becker@ipeg.uni-hannover.de

Paul Christoph Gembarski, Dr.-Ing.
Leibniz University of Hanover
Institute of Product Development
An der Universität 1
30823 Garbsen, Germany
gembarski@ipeg.uni-hannover.de

Roland Lachmayer, Prof. Dr.-Ing.
Leibniz University of Hanover
Institute of Product Development
An der Universität 1
30823 Garbsen, Germany
lachmayer@ipeg.uni-hannover.de

32

