

Abstract: Nowadays, ERP software is necessary for
successful business, which puts small and medium
enterprises in a difficult position, since these software
solutions are expensive. A small business might not need
all of the components of such complex software, but has
to pay for them, nonetheless. In this paper we present a
solution which relies on Software as a Service model and
mass customization to offer enterprise resource planning
to smaller companies, at a reasonable price. This is
attainable through, for example, reusing existing
applications and customizing them to serve new
purposes, as well as building modular applications on a
single database, which enables combining the modules
from different applications, thus creating new,
customized applications with specific purposes.
Key Words: Mass Customization, Software as a
Service, Enterprise Resource Planning, Application
Iteroperability

1. THE PROBLEM

 Since the beginning of the 20th century, mass
production has been a successful business model in
various industries and has been enabling fairly cheap
production for many decades. The problem lies within
the fact that whenever a production line switches from
one product to another, setup costs arise. These costs
apply regardless of the type of product we are
discussing: cars, clothing, furniture or software. Setup
costs include labor costs, tooling costs and time costs.
Unlike software products, material goods, especially
large ones, induct additional storage costs - storage space
is expensive. These additional expenses force production
of only popular and widely accepted products [1], which
leaves the customers with specific requirements
unsatisfied.

2. THE SOLUTION

 Mass customization is an innovative and powerful
business model, which applies to production in both
manufacturing and service industries. Its main objective
is to enable mass production, whilst providing the means
to customize each product to customers’ specific needs.
 The pros of mass customization are more than
obvious from all stated above. By implementing mass
customization in the production process, manufacturers
can satisfy the requisites of more customers. Among

other benefits [2] of mass customization, we can count in
increased market share, increased customer knowledge,
reduced order response time, reduced manufacturing
cost, and increased profit. Software products, which
require maintenance, are more easily managed if mass
customization was introduced to the production process -
changes made in one place, take effect in all the
customized products.

Every concept which possesses such notable merits,
must, naturally, have a downside. While the production
costs are significantly lower with mass customization,
the preparations which are required to enable it, take
their toll. Initial investments are commonly much higher
than in cases where every product has a unique design
and production process. It is very important to define
what kind of market is aimed at, and thus determine
whether these initial investments [3] are worthwhile.

3. SOFTWARE MASS CUSTOMIZATION

 Production of enterprise software solutions is a
particularly fertile ground for mass customization. In the
era of information technology, even the smallest
businesses are virtually forced to use software to run
their operations effectively. This phenomenon puts small
and medium enterprises (SMEs) in a serious
disadvantage - production, installation and maintenance
of the ERPs presents a gargantuan expense, in
comparison to their budget.

A convenient solution to this problem is for SMEs to
use ERPs developed in Software-as-a-Service (SaaS)
model. SaaS software solutions have a easily scalable,
single-instance, multi-tenant architecture, which, if
equipped with customization possibility, bring benefit to
both producer and customer sides. Producers save
precious time, otherwise consumed by development,
installation and maintenance of software for each
customer separately, through implementing and
maintaining only one application, which is available to
users via web. This implies that no installation is needed,
as the users will access the application through, for
example, a web browser. Saving resources by utilizing
this model, enables software producers to offer the
application to their customers for a much reasonable
price. SMEs can, thus, use powerful ERP software, for a
price they can afford.

Although all customers are using essentially the same
ERP software, the interface they see may differ. Namely,

CONFIGURE YOUR ENTERPRISE
APPLICATION

Ana Marija Ćirić, Ivan Dobrić, Stefan Martinov, Stefan Seiler
Danulabs, Novi Sad, Republic of Serbia

42424242

a customer may want some adjustments to the look-and-
feel of the user interface, such as branding (customers
logo), different layout or special labeling. Furthermore, a
customer might have special requests regarding the
functionality of the application, whether that is a need for
additional functions, or a need to hide the redundant
functions. Customization can be performed on both
usage- and production side. Usage side customization is
performed by the customer, using a customization
interface, if available. Production side customization is
performed by the software producer, according to
customer’s requirements.

4. THE REAL-LIFE EXAMPLE OF SOFTWARE
MASS CUSTOMIZATION

To describe the possibilities of mass customization in the
field of SaaS better, we will first present the concept of
B-op platform. B-op platform is a cluster of SaaS model
business applications, gathered around the omni-database
- a large central database. These applications, called B-
apps, can be developed by various parties, provided that
certain B-op requirements are met.

In order to use any of the B-apps, a company or a
person (which we will address as customer) has to
register with the B-op platform. Upon registration, the
customer can access their corporate dashboard, which
offers user administration, account settings, payment
overview and so on. Once the customer has registered
with B-op, they can browse the app market and subscribe
to B-apps. These apps will also appear on the corporate
dashboard, as well as on personal dashboards of all
users, to whom the customer has granted app usage. The
corporate dashboard itself, is the first customization
point. The customer can upload their logo, which appears
next to the B-op logo. Thus, the customer has a co-
branded dashboard, which all their employees (users)
will see when logged in.

 As it has been stated before, B-apps, although
running within the B-op platform, are developed by
various parties. Nevertheless B-apps are, essentially,
SaaS model business applications which belong to
certain categories (e. g. CRM, accounting, logistics) and
can be combined to application chains ranging from
simple business processes to a custom-tailored ERP for
each customer. This combination of apps is enabled
through subscription packaging - subscription models for
multiple apps are bundled into one special subscription
model. Subscribing to this model grants the customer
usage of all applications included, which can, from this
point of view, be considered modules of one complex
ERP.
 B-op offers a Package Assistant to all of its
customers - a module which helps choosing suitable
subscription packages, in accordance to customer’s
needs. Through this wizard-like program, a customer
fills out a questionnaire about what kind of business they
run, how many users they have, whether they need
human resource management, project management,
accounting, etc. After that, the package assistant offers
the customer a small number of subscription packages,
which are the most suitable to help them conduct their
operations most efficiently.

The possibility to use apps from different vendors as
a package comes from the app compatibility, which is
based upon the fact that all apps use the omni-database
as data model.

 4.1. The Compatibility Layer

 Other important topic of the mass customization
problem references to the compatibility layer
customization which is in praxis most commonly
represented as a huge multidimensional database shared
amongst other applications.

The compatibility layer enables us to reuse some
parts of the database to build different applications. As
the number of applications that use the database grows,
the database itself advances. The reason for this is that
the given applications in most cases do not have
completely similar structure. Therefore each application
can contribute to the database with its own diversity.

Enabling development of different applications on a
common database is a process that requires constant
attention and support. Our common database would
provide existing data model if there is a table structure
which can support a certain application, extended data
model with certain modifications, or completely new part
which has nothing to do with the data constructs that
already lie somewhere within the database.
 In order to enable application development over the
same database, the database has to be very intuitive and
easy to comprehend, since the number of tables in it can
grow to the extreme dimensions where, without well-
planned organization, orientation would be impossible.
One way for resolving this kind of issue is using table
namespaces with a strict standard in the table
nomenclature.
 Huge databases tend to be slow, non-scalable and
prone to errors. Problems like these are not unusual and
there is a well-known cure for them: database
replication. Similar to the one seen in the online
multiplayer game databases, data replication enables
clients to read data from any database replica while
updates have to be executed at all available replicas.
Thus, reads can be distributed among the replicas leading
to reduced response time and scalability. Furthermore,
the system is fault-tolerant as long as a replica is
available [4].

4.2. Application Faceting

Application facets are another aspect of B-op customizing.
This feature enables us to offer multiple B-apps, which
are, from the functionality point of view, one and the
same, but adapted to different groups of users. This is
achieved by using the B-op ontology which describes
entities kept in the omni-database and their relationships to
each other. As the database grows more complex, so does
the ontology. This ontology is, other than for application
faceting, useful for describing the database to parties
which develop B-apps, as it can easily scale up to more
than a thousand tables and become too complex to
comprehend to anyone but the architect himself.
 Naturally, every B-app should have one or more
configuration files which contain textual content of the
labels from the user interface. Extracting label contents
outside of the source code is common practice as it, aside

43434343

from keeping the code clean, enables software
internationalization. Although B-app producers have the
freedom of choosing the format of their label content
files, they also have the Nomenclature framework at
their disposal.

The Nomenclature Framework offers developers a
mechanism to specify which text corresponds to which
ontological concept within the B-op ontology, for a
language specified by an ISO language code. These
ontological concepts represent database tables, their
columns and relationships with one another. Upon
entering text for each desired concept of the ontology
(naturally, not all of them have to be used for every
application), the user gets a generated XML
nomenclature file for their application. The framework
provides the possibility to read label contents from the
generated file for specified ontology concept and
specified language code. If the application is developed
in a programming language which is not supported by
the framework, developers must implement label content
acquisition by themselves. This is the reason why XML
format is used for nomenclature files - it is a well known
standard. Using Nomenclature framework enables
developers to easily replace label content on the user
interface, by simply switching or modifying
nomenclature files, without changes to the source code.
This brings us to clarification of application faceting -
one application can pose as another functionally same
application, with different nomenclature, adapted to
different groups of users, by using different
nomenclature files.

We will illustrate application facets in the following
scenario: Within the database, there is a group of tables
designed for project management. Naming only a few, in
order to keep this example simple, we have:

 Project (with columns Name, Description,
Status, etc.)

 BusinessTask (with columns Name,
Description, Identification Number, Estimeted
Completion Time, etc.)

 Feature (with columns with columns Name,
Description, Identification Number, Deadline, etc.)

 Developer Task (with columns Name,
Description, Identification Number, Completion
Time, Deadline, etc.)

The part of B-op ontology representing these tables is
shown in Figure 1.

Figure 1. A part of the B-op ontology, project
management domain

The first part of this scenario is B-app DanuTask - a
project management application. The names in the data
model suit the semantics of this application: A product
manager creates a new project and adds business tasks,
which represent non-technical task specifications,
corresponding to user requirements. These tasks are later
reviewed by a technical manager and from them, features
which need to be implemented, are produced. Features
are devised into developer tasks, very specific,
technically expressed tasks, which are later assigned to
developers. Please note that this is a simplified
explanation of the data model and business processes
within the application. After entering nomenclature
content, we get an XML file, such as the following one:

<?xml version="1.0" encoding="UTF-8"?>
<Nomenclature app="DanuTask">
 <Entry onto="Project">
 <Content lang="en">Project</Content>
 </Entry>
 <Entry onto="BusinessTask">
 <Content lang="en">Business task</Content>
 </Entry>
 <Entry onto="Feature">
 <Content lang="en">Feature</Content>
 </Entry>
 <Entry onto="DevelopmentTask">
 <Content lang="en">Development task</Content>
 </Entry>
</Nomenclature>

 The second part of the scenario is a conceptual B-app
for production tracking in a furniture workshop. We will
call it FurniShop. Sales person of a furniture workshop
collects requirements from their customers and uses
FurniShop to specify what needs to be made, e. g. a set
of furniture or a single piece. We will call that a product.
 To create that product, a plan needs to be made. Plan
items represent roughly specified steps which need to be
taken in the process of product creation, like: design and
carpentry. These are, then, devised into task bundles. For
example, carpentry can be devised into cutting and
molding, component fabrication, assembly, etc. After
that, specific tasks are derived from the bundles, for
example, component fabrication involves machine
processing and shaping of the timbre, as well as sanding
and smoothing the surfaces.

 If we pay closer attention, we can see the similarity
between these two applications. The data model is the
same. To be precise, whole applications are practically
the same, where the latter just needs to be adapted for a
specific field of production. This adjustment can just be
on the user interface side. In the following XML snippet,
we can see the nomenclature file, which can be applied
to the first application, thus, producing a whole new
application for a specific purpose:

<?xml version="1.0" encoding="UTF-8"?>
<Nomenclature app="DanuTask">
 <Entry onto="Project">
 <Content lang="en">Product</Content>
 </Entry>
 <Entry onto="BusinessTask">

44444444

 <Content lang="en">Plan item</Content>
 </Entry>
 <Entry onto="Feature">
 <Content lang="en">Task bundle</Content>
 </Entry>
 <Entry onto="DevelopmentTask">
 <Content lang="en">Task</Content>
 </Entry>
</Nomenclature>

4.3. Application Fragmentation and
Recombination

There are also cases where nomenclatures cannot offer
the customizations that the customer needs. We
introduce the concept of application fragmentation to
overcome some of the issues that might occur when a
customer needs a specific part of an application to be
changed, added or upgraded.

 Application fragmentation is a process of separating
aspects or domains of a single large integral application,
where every application fragment corresponds a single
problem domain that the integral application solves.
Application fragmentation allows the integral application
to be much more customizable and extensible making
modifications to the integral application faster and less
expensive.
 We have already developed a fragmented application
DanuTask that is an extensible project management tool
consisting of 4 application fragments: administrator
fragment, business manager fragment, technical manager
fragment and a developer fragment. Any of these
fragments can be replaced by a custom application
fragment that can interact with other fragments through
the omni-database; thus conforming to the original
integral application. This also allows the customer to
select not only whole applications, but a set of
application fragments that is a subset of the integral
application that are most beneficial to his needs.
 We can illustrate the practical use of the application
fragmenting with the DanuTask application, where the
customer requires a new custom-tailored module that
manages the domain of catering named catering officer.
We can reuse the underlying architecture of
DanuTask with the required nomenclature changes for
the administrator, business manager and technical
manager fragment and replacing the developer module
with the catering officer fragment. The interoperability is
maintained on the omni-database level to ensure
fragment integration. This is portrayed in Figure 2.

Figure 2. Application fragmentation and recombination

5. CONCLUSION

 In order to explain the possibilities of mass
customization in software production, we have made an

example of how SaaS-based business applications, which
are aimed at thousands of users, can be customized to
suit each individual customer, better. The customization
possibilities range from aesthetical intra-application
customization, over functional customization to inter-
application customization, enabled through compatibility
layer. The B-op platform, which is exemplified in this
paper, is a work in progress and these customization
possibilities will be refined further, in the future.

6. REFERENCES

[1]C. Ardito, P. Buono, M. F. Costabile, R. Lanzilotti, A.
Piccinno, B. R. Barricelli, S. Valtolina, “An
Ontology-based Approach to Product
Customization”, Third International Symposium on
End-User Development 2011, Torre Canne (Italy),
June 2011

[2] R. Selladurai, “Mass Customization Strategy in
Management and its Applications to Small Business”,
Small Business Institute Directors’ Association, 2004.

[3] C. W. Krueger, “Software Mass Customization”,
BigLever Software Inc., March 2006

[4] Y. Lin, B. Kemme, M. Patino-Martinez, R. Jimenez-
Peris, “Applying database replication to multi-player
online games”, Fifth Workshop on Network and
System Support for Games, Singapore, October 2006.

CORRESPONDENCE

Ana Marija Ćirić, CBDO
Danulabs
Kraljevića Marka 11/18
21000 Novi Sad, Serbia
ana.marija.ciric@danulabs.com

Ivan Dobrić, CEO
Danulabs
Kraljevića Marka 11/18
21000 Novi Sad, Serbia
ivan.dobric@danulabs.com

Stefan Martinov, CRO
Danulabs
Kraljevića Marka 11/18
21000 Novi Sad, Serbia
stefan.martinov@danulabs.com

Stefan Seiler, Founding Partner
Danulabs
Kraljevića Marka 11/18
21000 Novi Sad, Serbia
stefan.seiler@danulabs.com

45

