
 

 

  

Abstract: Mass customized products usually follow a 
non-standardized demand pattern. Thus, it is crucial for 
production managers to overcome such uncertainties in 
an effective way. During the last decades, Just In Time 
(JIT) systems seem to gain ground in this race of finding 
analogous solution spaces. On the other hand, 
forecasting techniques stand as an equivocal solution, 
and they gradually become more mature and useful as 
well. The procedure of managing demand uncertainty, by 
finding solution spaces, reflects the need for managers to 
be aware of possible future states of demand. Situation 
Awareness, specifically, requires the perception, 
comprehension, and projection of every operational state 
of the examined system. The current paper studies the 
demand uncertainty and its effect on production 
planning. It suggests a procedure for forming the 
awareness of demand uncertainty, and at the same time a 
‘SA-inspired’ system for production planning in Mass 
Customization companies. 
Key Words: Demand Situation Awareness (DemSA), 
GM(1,1), Kanban, Production Planning 

1. INTRODUCTION 

In substance, awareness refers to the state or ability to 
perceive, feel, or be conscious of events, objects, or 
sensory patterns. Although it was initially considered a 
cognitive procedure, it was then acknowledged that the 
awareness of a situation is a significant task and process 
in every expression of engineering or science concepts in 
general. Yet, Situation Awareness (SA) is a ‘patented’ 
term, widely used since 1988, describing the observation 
and understanding of environmental elements with 
respect to time and space. It is a field of study concerned 
with the perception of the environment, critical to 
decision makers acting in complex and dynamic areas. 

SA is used herein to prove the utility of gained 
experience in Mass Customization (MC) production lines 
and through this, we propose a method towards reducing 
demand uncertainty in terms of customized products. 
Thus, in order to form the Demand Situation Awareness 
( DemSA ), regarding its uncertainty, a practical tool that 
delivers a quantitative indication to SA and a 
corresponding estimation of demand is needed. 

Such a tool could possibly belong to the group of 
Grey Analysis (GA) mathematical modeling, on the 
grounds that its focus is on the problems of uncertainty 
of small samples and poor information that are difficult 
for probability and fuzzy mathematics to handle. What is 
more, grey models (GM) are a practical tool in case of 
having sequences of data, something common in 
production lines. 

In a nutshell, the present work focuses on the 
applicability of GM to predicting, planning, and 
providing awareness of the posible future levels of 
demand. The paper’s utmost aim is to add value, 
stimulate, and enhance the attempts of coping with 
demand uncertainty. For one thing, and before 
elaborating on the proposed method, it is useful to make 
an introduction to SA and GA. 

2. THE SIGNIFICANCE OF BEING AWARE OF 
PRODUCTION DEMAND 

One widely cited definition proposes SA as a state of 
working knowledge of an individual; it is how much, and 
how accurately, humans are aware of their current 
situation and it concerns (1) the perception of the 
elements within a system, (2) the comprehension of their 
meaning, and (3) the projection of their future state [1]. 
Another definition [2] argues that SA is what someone 
needs to know in order not to be surprised. 

In a MC company, a ‘surprise’ might be an 
unexpected fluctuation in production demand, for 
instance. Thus, in order to avoid or reduce ‘surprises’, 
i.e. to expect such fluctuations, organizations need to use 
production data, refering to a given customized product, 
perceive the current demand situation regarding 
sophisticated products or customer preferences, 
comprehend market trends, and, finally, project the 
possible impeding volume of demand aided by 
production data. These three fundamental steps of the 
DemSA  formation process are depicted in Figure 1, 
specifically in the upper shape, which is a readaptation of 
Endsley’s three-level model [1] illustrated in the upper 
shape of Figure 1. 

The perception-comprehension-projection process 
opens the path towards DemSA  and sets the context 
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within which this paper adopts grey estimation and 
prediction models. 

 

 
Fig. 1. DemSA formation and MC production planning 

 

As a proposed production planning system, we 
introduce the Kanban system into the logistics design, 
while the GM(1,1) estimation is used to design the 
Kanban system for logistics. The whole formulation 
defines a newly introduced ‘SA-inspired’ production 
planning system. 

2.1 Grey Models to Materialize DemSA 

In theory of control, people often make use of colors 
to describe the degree of clearness of the available 
information. Objects with unknown internal information 
are black boxes, where ‘black’ indicates unknown 
information, ‘white’ the completely known information, 
and ‘grey’ the partially known and/or unknown 
information [3]. 

The research objects of grey systems theory consist 
of uncertain systems that are known only partially with 
small samples and poor information. Theory focuses on 
the generation and excavation of the partially known 
information, possibly arising from the behavior of the 
system or by its structure, boundary, and elements. 

Here, demand is the ‘grey’ factor, since there is 
uncertainty about how many customized products will be 
produced in order to cover the unkown market demand. 
To conform to new market demands, there is no need of 
endangering the capacity of production lines, but taking 
advantage of experience and data. 

2.2 JIT for MC Production Planning 

A challenge for a MC company is to apply efficient 
logistics in order to handle orders. A customer’s order 
consists of many options that shape his/her personalized 
product. The variables that provide these options are 
called product Key Value Attributes (KVA) and provide 
information for the production planning [15]. KVA 
become real through specific operations of a production 
process. Different tasks produce different options of 
KVA, customers intervene into the production process 
by choosing among different options of KVA, and 
therefore different tasks. 

From the supply chain management point of view, 
customers’ intervention is handled by keeping a small 
stock before the operation where intervantion takes 
place. The point in supply chain where stock is located 

for handling customers’ orders is the interaction point 
(IP) [13], also used to decouple the supply chain for 
greater efficiency [18]. Material and information flow 
are equally important for supply chain management and 
they are manageable through the decoupling point 
methodology [17]. The point in a supply chain where 
operations start after receiving customer’s order is called 
Customer Order Decoupling Point (CODP) [5]. By 
others, CODP distinguishes the lean from agile strategy; 
this approach is known as “leagile” [6]. The CODP is 
also used by many experts just as “decoupling point” 
[16]. IP and CODP could be the same for a MC 
company. As shown in Figure 2, the CODP is the stock 
holding point and could be displayed in the following 
supply chain structures. The IP is where a customer order 
creates a production order. When a customer’s order is 
received, a number of operations must be completed to 
complete the order. An order could be a certain amount 
of products or just one product. Previously, a number of 
operations were completed in order to finish the parts of 
the product/s. The IP is a stock handling point inside the 
production process. The demand upstream from the 
CODP is quite stable and easily managed. The demand 
downstream from the CODP is unstable and more 
unpredictable, likewise in supply chain (see Figure 2). 

The products are customized by the downstream from 
the CODP operations rather the upstream. The more 
upstream the CODP is located in a production process, 
the greater the achievable customization level of the MC 
company. The CODP is the stock handling point of the 
production process, and functions according to FIFO 
supermarket [8]. 

 

 
Fig. 2. Supply chain structures and the CODP [7] 

 

Usually, the stock of CODP is handled by a Kanban 
system, either by in-process Kanban (IPK) or by Kanban 
quantities per part [19]. Customization usually occurs in 
operations that serve to complete the finished products, 
but it is also possible to occur in those of the parts. In 
such cases, more CODPs could be used along a 
production process. Such CODPs are more than one if 
customization activity occurs in more points along the 
production process, and the pull mode is achieved by the 
same way, likewise the aforementioned case. 

3. GM(1,1) MODEL AND KANBAN SYSTEM FOR 
PRODUCTION PLANNING 

Production planning for MC depends on many 
factors. There are many production strategies for the 
production planning that a company can follow. In this 
paper, we introduce the GM(1,1) model into the 
DemSA  and the Kanban system into the step of logistics 
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design of the proposed production planning system. The 
GM(1,1) model is used for the estimation of the present 
demand, while, based on this, a forecast of the future 
demand is pursued. This estimation is used in order to 
design the Kanban system. The whole formulation 
defines a new proposed production planning system. 

3.1 The GM(1,1) Model 

GM(1,1) model is an estimation and forecasting 
model, exceedingly applicable in the field of industry, 
agriculture, society, and economy [9,10]. The novelty of 
the model is that there is no need of moderating known 
data, but using them as raw information. It is suitable in 
case of low amount of data, where decision makers 
should be objective and efficient. It also belongs to the 
broader family of GM(n,m) models, where ‘n’ indicates 
the degree derivative and ‘m’ is about the number of 
values consisting the input of the model. Hence, GM(1,1) 
is the grey model of first order and of one variable. 

In order to smooth the randomness, the primitive data 
obtained from the system to form the GM(1,1) input data 
is subjected to an operator, named accumulating 
generation operator (AGO). The differential equation, 
i.e. (1), of the GM(1,1) model is solved to obtain the k  -
step ahead predicted value of the system. Finally, using 
the predicted value, the inverse accumulating generation 
operator (IAGO) is applied to find the predicted values 
of original data [11]. In this section, six descriptive steps 
fully delineate the mathematical procedure: 

 

Step 1 
The  )(),...,2(),1( )0()0()0()0( nxxxX   sequence of raw 

data is defined, consisting of suitable time-points, the 
number of which depends on the nature of the case. 
 

Step 2 
 )(),...,2(),1( )1()1()1()1( nxxxX   is the new accumulated 

sequence of data, calculated with the AGO: 





k

i

nkixx
1

)0()1( ,...,2,1),(  

 

Step 3 
 )(),...,2(),1( )1()1()1()1( nxzz  is a new sequence of 

data created by the adjacent neighbour means [6]: 
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Step 5 
The time response function is: 
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and the IAGO is: 
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Equation (3) is used to calculate the GM(1,1) estimation 
of known values and can also predict the unknown ones. 
 

Step 6 
The relative percentage error is shown below and 

represents the difference between raw data, i.e. )()0( kx , 

and the output of the GM(1,1) model, i.e. )()0( kx

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apprU  is the estimated and U  is the input value. 

3.2 The Kanban System 

A Kanban system is used to handle the stock in a 
CODP, when postponement for MC occurs. Although 
there are many ways that a Kanban system may be 
utilized [12], this work adopts the multi-card system, 
although it does not affect the application example 
results in the next session. The steps of estimating the 
Kanban quantity of each material capable of satisfying 
the future demand per day or per time-point are [13]: 

 

Step 1 
Demand at capacity ( cD ) per product, per production 

line, is used to calculate Takt time and design a 
production line [8]. cD  is estimated by (past) demand 

data and, if possible, from forecasted demand data. 
According to the aforementioned pattern of cD  

estimation, cD  is calculated as the mean demand per day 

of past data increased for one standard deviation in order 
to absorb the positive demand fluctuations. This 
estimation is called herein ‘traditional’ cD . We also 

calculate the cD  by the GM(1,1) data under the context 

of DemSA . The difference between ‘traditional’ and 
DemSA  cD  in the Kanban quantity calculations will be 

discussed in the next section. 
 

Step 2 
The part quantity ( Q ) per product, per production, line 

derives from the bill of materials (BOM). It is the 
amount of parts needed to build a product. 
 

Step 3 
Replenishment time ( R ) per part, per production 

line, refers to the time needed to replenish the Q  part of 

a part that a product consists of, i.e. BOM. 
 

Step 4 
H  is the available time to replenish the Q  portion of a 

part that builds a product. 
 

Step 5 
Define P  that is the packaging size for vendors’ 
materials or the batch size for one production cycle 
materials. 
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Step 6 
We calculate the Kanban quantity, which refers to 

pieces of a part, and is defined as [12]: 

PH

RQDc
Kq 


       (5) 

The calculation result is rounded up for this reason. cD  

(Step 1) is the demand at capacity of the product that the 
part belongs to, used to design the logistics of the system 
that produces the product. Q  (Step 2) is the quantity per 

part of a product and derives from the BOM, R  (Step 3) 
is the replenishment time for the part, H  (Step 4) is the 
available production time, and P  (Step 5) is the package 
or batch size of the part. The result of Eq. (5) has to be 
rounded up to the next integer, due to qK  referring to 

pieces of parts. 
After calculating the Kanban quantity for ‘traditional’ 

cD  and DemSA  Kanban quantity for simulated cD , the 

question is which Kanban quantity is appropriate for 
logistics design, namely which Kanban quantity satisfies 
the demand? The data of demand is the actual data and 
the simulated data from the GM(1,1) model. Which 
Kanban quantity satisfies the actual demand? It is the 
second question. The following procedure compares the 
Kanban to the DemSA  Kanban quantity and is called 
the “comparison procedure” for this work: 
 

Step 1 
Does the ‘traditional’ Kanban quantity satisfy the actual 
demand (Act.Dem.)? For each time-point: 

(0) (0) (0) (0)Act.Dem. (1) (2) ( )
, ,...,

q q q q qK K K K K

X x x x n     
  

 (6) 

The Kanban quantity refers to the ‘traditional’ cD  and is 

calculated by equation (5). 
 

Step 2 
Does DemSA Kanban quantity satisfy the simulated 
demand (Sim.Dem.)? For each time-point: 

(1)Sim.Dem.

DemSA DemSA q qK K

Z
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(1) (1) (1)(1) (2) ( )
, ...,

DemSA DemSA DemSA q q qK K K
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  (7) 

The DemSA  Kanban quantity refers to the DemSA  cD  

and is calculated by equation (5). 
 

Step 3 
Does DemSA  Kanban quantity satisfy the actual 
demand (Act.Dem.)? For each time-point: 

(0)Act.Dem.

DemSA DemSA q qK

X

K
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(0) (0 ) (0 )(1) (2) ( )
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DemSA DemSA DemSA q q q
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The DemSA  Kanban quantity comes of the DemSA cD  

and is calculated by equation (5). 
 

Step 4 
How many demand time-points are not satisfied by the 
‘traditional’ and how many by the DemSA  Kanban? For 
how many time-points are the above measurements 
greater than one (>1)? Each time-point denotes a 
working day. Namely, 
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Step 5 
Compare the factors from Step 4 and come up with 
results. The AtK  gives the number of how many times 
the Kanban quantity does not satisfy the actual demand. 
The StDemSAK  gives how many times the DemSA  
Kanban quantity does not satisfy the simulated demand 
given by GM(1,1). The AtDemSAK  shows how many 
times the DemSAK does not satisfy the actual demand. 
The comparison between AtK  and AtDemSAK  gives 
information on which Kanban quantity is more 
appropriate to satisfy the actual demand. 
 

Step 6 
The following percentage difference (Per_diff%) gives 
the relative change that GM(1,1) applies from Kanban 
quantity to DemSA  Kanban quantity: 

Act.Dem. Act.Dem.

DemSA 
Per_diff % = 100

Act.Dem.
q q

q

K K

K




              (12) 

min AtK, AtDemSAK  denotes which Kanban is 

appropriate for the actual demand: 

 If min AtK, AtDemSAK AtK,       

     is chosen for Logistics Design.

Otherwise,   

     DemSA  is chosen.

q

q

K

K

 
 
 
 
 
 
 

              (13) 

The chosen Kanban gives the amount of materials to be 
stored in the CODP. 

4. SCENARIOS AND APPLICATION EXAMPLES 

Aiming to illustrate how the GM(1,1) mathematical 
model applies in reality, a number of application 
examples with data from real production lines are 
presented below. To match and investigate the ‘behavior’ 
of uncertainty in terms of the demand of mass 
customized products, two scenarios were selected. The 
general context was to reinforce DemSA , in pursuance 
of taking a step forward towards reducing uncertainty, or 
at least comprehending its fluctuations, affected by 
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distinct or latent factors (mostly affected by market) that 
researchers and/or companies look but sometimes fail to 
see. 

4.1 The Source of Data 

Raw data depicts the consumtion of two materials 
(part 1 and part 2) during a high season of three months; 
June, July, and August 2010. Raw data includes sales' 
quantities that differ from time-point to time-point. It 
includes, for example, the quantities of 9 time-points in 
June for part 1, and 8 time-points for part 2. For June, 
July and August the corresponding data is depicted in 
Table 1. 

 

 
Fig. 3. Part 1 and part 2 of a fruit bushel 

 

The two materials are plywood slats of fruit bushels. 
Fruit bushels are considered as seasonal products and 
customized as well. Their length and width differs from 
season to season and it is affected by the fruits’ size 
(fruits’ geometry), which depends on weather conditions, 
soil fertilization, waterization scheduling, and soil 
nutrients. The slats, named part 1 and part 2, are the 
basic customized materials of a fruit bushel as illustrated 
in Figure 3. 

Raw data has no specific time sequence, meaning 
either that the company has no standard registrations in 
its database or that the demand was unexpected. 
Concerning the latter, it seems quite impossible that a 
company with many years of experience has no picture 
of the upcoming product demand, thus the former 
explanation seems to be more reasonble. 

4.2 Application Example Results 

Table 1a, b, and c represents the three high season 
months regarding the demand of fruit bushels. Each table 
contains four main columns, e.g. ‘Raw data - june 9_p1’, 
‘Raw data - june 8_p2’ etc, which signify the examined 
month, the time-points that constitute each sequence of 
data, and the part of the fruit bushel, given that each 
bushel consists of two main types of parts having 
different size. The designation ‘june 9_p1’, for example, 
means that the actual data, as well as the estimated by the 
GM(1,1) model, refer to June. The sequence of data that 
is used as an input to the model consists of ‘9’ time-
points, as being taken by the company in the form of raw 
data, and the coresponding numbers address information 
about the 1st part, i.e. ‘p1’, of the bushel. Beside the 
actual values, we give the simulated ones. The values in 
bold are the predicted values. The ‘%error’ gives the 
divergence between actual and simulated data. The same 
explanation accounts for ‘Raw data - june 8_p2’, ‘Raw 
data - july 10_p1’, ‘Raw data - july 10_p2’, ‘Raw data - 
august 11_p1’, and ‘Raw data - august 9_p2’. 

To explain the utility of the rest of the colums that 
bear no ‘Raw data’ designation we should first explain 
the two scenarios made in the present work: 

 Scenario 1: Raw data is used straight forward from 
the excel file that the company provided us with. 
In all cases, the raw data that shape the input 
sequence consists of less time-points compared to 
the second scenario data. 

 Scenario 2: The total demand of the parts is kept 
the same as in Scenario 1, but we divide them 
along more time-points than in the first scenario, 
in order to see how a wider distribution of data 
could possibly affect the estimation and 
forecasting of the demand. 

Keeping in mind that every month has nineteen 
working days average and that, since the company 
produces parts of a product, they do not receive new 
orders every day, we conclude that sixteen working days 
are a rational amount of time-points to a sequance of data 
that represents a row of customized product demand 
registrations. 

The reason for building those scenarios is to 
investigate if more time-points can support the 
robustness of future demand awareness. Since there is 
enough gained experience in the field of MC, and there 
are companies that produce such products for years, this 
experience is significant to be utilized in a more 
structured way. Awareness could enhance the alertness 
in production. An estimation and forecasting model, like 
those of GA, may be the means to achieve awareness and 
knowledge creation in terms of production issues. 

 

Table 1. Application example results 

 
(a) 
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(b) 

 
(c) 

 

From Table 1, one can see that the input and the 
output of the model consist of equal number of time-
points per sequence of data. The simulated values derive 
from the first step of the model, towards caclulating the 
forecasted, since the GM(1,1) model does not work like a 
black box, but there is a continious function of estimated 
values based on the actual ones. 

The couple of values below the simulated ones 
represents the forecasted ones. They represent the 
expected product demand in the next two days, i.e. time-
points, if we assume that we have no actual data for these 

two time-points. These projections are also useful if one 
takes full advantage of them in case of predicting next 
year’s demand. This also enhances our initial claim that 
GM(1,1) is a practical tool for decision making. 

Judging by the triplet of results presented in Table 1, 
the most important comment to be made here, is that the 
GM(1,1) model gives as an output better results, in terms 
of the ‘%error’, when the input sequence of data consists 
of more time-points. This does not depend on the nature 
of the model, but on the fact that more information and 
regular reports about each stage of production and 
demand drive to more knowledge. As a critical result, it 
seems that it could also lead to a safer projection about 
the future behavior of the demand, when a company is 
about to produce the same, or almost the same (under the 
notion of bearing akin characteristics), mass customized 
product. 

Like every newly introduced method, the output of 
the model conveys the existence of some weak points 
that the suggested method should tackle. For example, in 
some cases, i.e. Table 1c ‘Raw data - august 9_p2’, 
where the ‘%error’ is 254.20%, there is still enough 
uncertainty regarding the estimation and prediction at 
this specific point in time. Of course, in most of the cases 
(see Table 1), where the fluctuation in demand is not so 
unpredictable or extreme, the model exhibits a 
satisfactory performance and predictivity. 

In order to explain this fluctuation in the error, we 
use the ARCH(q) model, which can be estimated using 
ordinary least squares; a methodology to test for the lag 
length of ARCH errors using the Lagrange multiplier test 
[14]. ARCH stands for Autoregressive Conditional 
Heteroskedasticity and refers to an econometric term 
used to model financial time series with time-varying 
volatility, such as stock prices. It assumes that the 
variance of the current error is related to the size of the 
previous periods’ error [14]. That type of modelling was 
intentionally chosen, because the demand of customized 
products shows great volatility, similar to financial 
markets. 

We have proven through the application example 
that, the variance of the current error is a function of the 
actual sizes of the error of the previous time periods [14]. 
Those months exhibiting very high errors prove the 
dependencies between errors. 

 

Table 2. Evidence of ARCH presence 

 
 

The corresponding information is presented in Table 
2, which is the output of the ARCH model. The LM  
value is a statistic formula [14] that tests the null 
hypothesis, which conveys that there is no ARCH effect 
present. Thus, the output of the model shows that the null 
hypothesis is rejected, i.e. 0LM  , conveying that there 
is evidence of presence of ARCH. This, in practice, 
implies that the errors are interdependent, i.e. the above 
mentioned 254.20% error depends on the previous error, 
i.e. 10.09%, but also affects the behaviour of the next 
error which is 63.22%, and so on. 

32



The same model can be tested for all sequences of 
data. Here, we chose to show only those with the higher 
errors, in order to convince that even in the cases where 
demand seem to fluctuate in an unexpected manner, data 
and gained experience could possibly aid an effort 
towards estimating and predicting the demand of 
customized products, at least to an extent. 

Referring again to Table 1, the estimate and 
predictive capacity of the GM(1,1) model seems to be 
greater in the case of calculating the total amount of 
product demand on a monthly level, than examining 
demand as fragments. If for instance, we focus on Table 
3 on the ‘%error’, we see that there is a faint diference 
between the actual and the estimated values of demand. 
 

Table 3. Total application example results 

 
 

4.3 Logistics Design Results 

The comparison between Kanban quantity and 
DemSA  Kanban quantity is illustrated in this section. 
But first, Kanban quantity should be defined by raw data 
(actual demand), and the DemSA  Kanban quantity 
should be defined by GM(1,1) model data (simulated 
demand). In Step1 each data produces a cD , calculated 

for a three month period. A Kanban system is also 
designed for those three months. In a case of using raw 
data for the whole season, cD and Kanban system would 

be valid for this season and equally for one year, etc.  
The variables and calculations of the next steps for 

Scenario 1 are presented in Table 4. The variables of 
Step 2 to 5 are identical. The only variable that 
influences the Kanban comparison procedure is demand, 
in Step 1. The same procedure stands for part 2 in 
Scenario 1 (see Table 5). 
 

Table 4. qK  and DemSA qK  

Kanban for part 1, Scenario 1 
  Actual Simulated 

Step 1 

Mean 105996 107622.93 
StDev 43848.31 23721.48 

cD  149844.32 131343.41 

Step 2 Q  1 pcs. 1 pcs. 
Step 3 R  420 min. 420 min. 
Step 4 H  420 min. 420 min. 
Step 5 P  1 pcs. 1 pcs. 

Step 6 qK  149845 131344 
 

Table 5. qK  and DemSA qK  

Kanban for part 2, Scenario 1 
  Actual Simulated 

Step 1 

Mean 43737.31 41292.1 
StDev 34129.93 21828.56 

cD  77867.34 63120.66 

Step 2 Q 1 pcs. 1 pcs. 
Step 3 R 420 min. 420 min. 
Step 4 H 420 min. 420 min. 
Step 5 P 1 pcs. 1 pcs. 

Step 6 qK  77868 63121 
 

The following procedure compares Kanban quantity 
to DemSA  Kanban quantity in order to find which one 
is more suitable to satisfy the actual demand. The 
analysis of each time-point, for part 1 during three 
months, using Step 2 and 3 from the comparison 
procedure for Scenario 1, is displayed in Table 6. The 
numbers in bold are the predicted values created by 
GM(1,1), likewise the 10th, 11th, 22th, 23th, 35th and 36th 
time-points for part 1. The Actual demand in the Kanban 
quantity column derives from the raw data demand of 
part 1 and part 2, respectively. 
 

Table 6. Scenario 1 
Kanban Suitability Analysis for part 1 per time-point 

Time-
points 

Step 1 Step 2 Step 3 
Eq.6 Eq.7 Eq.8 

Act.dem. 
to qK  

Sim.dem. to 
DemSA  qK  

Act.dem. to 
DemSA  qK  

1 0.17 0.19 0.19 
2 0.47 0.68 0.53 
3 0.40 0.73 0.46 
4 1.02 0.78 1.16 
5 0.77 0.83 0.88 
6 1.06 0.89 1.20 
7 0.54 0.94 0.61 
8 0.88 1.01 1.00 
9 0.93 1.07 1.06 

10 0.69 1.15 1.15 
11 0.34 1.22 1.22 
12 0.84 0.78 0.78 
13 1.18 0.87 0.39 
14 1.27 0.86 0.95 
15 0.35 0.86 1.34 
16 0.58 0.86 1.45 
17 0.42 0.86 0.40 
18 1.21 0.86 0.66 
19 0.59 0.86 0.48 
20 1.01 0.86 1.38 
21 1.11 0.86 0.68 
22 0.64 0.85 0.85 
23 0.60 0.85 0.85 
24 0.55 1.15 1.15 
25 0.48 0.86 1.27 
26 057 0.83 0.73 
27 0.35 0.80 0.68 
28 0.87 0.78 0.63 
29 0.73 0.75 0.54 
30 0.62 0.73 0.65 
31  0.70 0.40 
32  0.68 0.99 
33  0.66 0.83 
34  0.63 0.71 
35  0.61 0.61 
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36  0.59 0.59 
>1  

(Step 4) 
AtK =7 StDemSAK =5 AtDemSAK =10 

 

The same procedure stands for part 2 in Scenario 1 
(Table 7). The numbers in bold are the predicted values 
created by the GM(1,1) model. 
 

Table 7. Scenario 1 
Kanban Suitability Analysis for part 2 per time-point 

Time-
points 

Step 1 Step 2 Step 3 
Eq.6 Eq.7 Eq.8 

Act.dem. 
to qK  

Sim.dem. to 
DemSA  qK  

Act.dem. to 
DemSA  qK  

1 1.30 1.60 1.60 
2 1.07 1.59 1.31 
3 1.56 1.29 1.92 
4 0.40 1.05 0.49 
5 0.76 0.85 0.93 
6 1.05 0.69 1.29 
7 0.26 0.56 0.32 
8 0.11 0.45 0.13 
9 0.41 0.37 0.37 
10 0.36 0.30 0.30 
11 1.29 0.51 0.51 
12 0.39 1.07 0.44 
13 1.29 0.95 1.60 
14 0.66 0.85 0.48 
15 0.11 0.76 1.60 
16 0.73 0.68 0.81 
17 0.11 0.60 0.13 
18 1.13 0.54 0.90 
19 0.06 0.48 0.13 
20 0.40 0.43 0.16 
21 0.30 0.38 0.38 
22 0.10 0.34 0.34 
23 0.23 0.08 0.08 
24 0.67 0.39 0.49 
25 0.58 0.41 0.37 
26 0.63 0.44 0.12 
27 0.22 0.47 0.29 
28  0.49 0.83 
29  0.53 0.72 
30  0.56 0.78 
31  0.60 0.27 
32  0.63 0.63 
33  0.67 0.67 
>1  

(Step 4) 
AtK =6 StDemSAK =5 AtDemSAK =6 

 

Step 5 is a comparison between AtK  and 
AtDemSAK . Kanban suitability for part 1, Scenario 1, 
denotes that Kanban quantity, calculated by using the 
‘traditional’ cD  (actual demand), seems more suitable 

than DemSA  Kanban quantity, since AtK  is less than 
AtDemSAK  (see Table 6). The analysis for part 2 
denotes that Kanban shares the same suitability, since 
AtK  equals to AtDemSAK  (see Table 7). 

The final Step 6 gives the relative change between 
Kanban quantity and DemSA  Kanban quantity by using 
equation (12). The DemSA  Kanban quantity is 
increased by 14.09% to Kanban quantity for part 1 in 
Scenario 1. The DemSA  Kanban quantity is increased 
by 23.36% to Kanban quantity for part 2 in Scenario 1. 

The same procedure stands for part 1 and part 2 in 
Scenario 2 (see Table 8 and 9). 
 

Table 8. qK  and DemSA qK  

Kanban for part 1, Scenario 2 (16 time-points) 
  Actual Simulated 

Step 1 

Mean 66247.50 68934.19 
StDev 14503.39 14467.92 

cD  80750.90 83402.12 

Step 2 Q 1 pcs. 1 pcs. 
Step 3 R 420 min. 420 min. 
Step 4 H 420 min. 420 min. 
Step 5 P 1 pcs. 1 pcs. 

Step 6 qK  80751 83403 
 

Table 9. qK  and DemSA qK  

Kanban for part 2, Scenario 2 (16 time-points) 
  Act. Sim. 

Step 1 

Mean 24602.29 25128.12 
StDev 7647.87 7616.90 

cD  32250.17 32745.03 

Step 2 Q 1 pcs. 1 pcs. 
Step 3 R 420 min. 420 min. 
Step 4 H 420 min. 420 min. 
Step 5 P 1 pcs. 1 pcs. 

Step 6 qK  32251 32746 
 

Analysis of each time-point for part 1 and 2, for three 
months, using Step 2 and 3 from the comparison 
procedure for Scenario 2, is displayed in Table 10 and 
Table 11, respectively. The numbers in bold are the 
predicted values created by GM(1,1) model, likewise the 
10th, 11th, 22th, 23th, 35th and 36th time-points for part 1. 
 

Table 10. Scenario 2 
Kanban Suitability Analysis for part 1 per time-point 

Time-
points  

Step 1 Step 2 Step 3 
Eq.6 Eq.7 Eq.8 

Act.dem. 
to qK  

Sim.dem. to 
DemSA  qK  

Act.dem. to 
DemSA  qK  

1 0.49 0.47 0.47 
2 0.54 0.51 0.53 
3 0.49 0.53 0.47 
4 0.54 0.56 0.53 
5 0.59 0.58 0.57 
6 0.61 0.61 0.59 
7 0.65 0.64 0.63 
8 0.69 0.67 0.66 
9 0.68 0.70 0.66 
10 0.81 0.73 0.79 
11 0.90 0.77 0.88 
12 0.89 0.81 0.86 
13 0.98 0.84 0.94 
14 0.83 0.88 0.80 
15 0.99 0.93 1.96 
16 0.88 0.97 0.85 
17 0.73 1.02 1.02 
18 0.68 1.06 1.06 
19 0.69 0.70 0.70 
20 0.69 0.63 0.66 
21 0.70 0.66 0.67 
22 0.79 0.69 0.67 
23 0.73 0.71 0.68 
24 0.85 0.74 0.76 

34



25 0.84 0.77 0.71 
26 0.94 0.80 0.83 
27 0.92 0.84 0.81 
28 1.04 0.87 0.91 
29 1.02 0.91 0.89 
30 1.06 0.94 1.00 
31 1.10 0.98 0.99 
32 1.10 1.02 1.02 
33 0.99 1.06 1.07 
34 1.06 1.10 1.06 
35 0.67 1.15 1.15 
36 0.67 1.19 1.19 
37 0.60 0.95 0.95 
38 0.65 0.66 1.03 
39 0.67 0.68 0.65 
40 0.74 0.70 0.65 
41 0.83 0.73 0.59 
42 0.94 0.75 0.62 
43 1.00 0.78 0.65 
44 0.96 0.80 0.71 
45 1.06 0.83 0.80 
46 1.04 0.85 0.91 
47 1.00 0.88 0.97 
48 1.06 0.91 0.93 
49  0.94 1.03 
50  0.97 1.01 
51  1.01 0.97 
52  1.04 1.03 
53  1.02 1.02 
54  1.06 1.06 
>1  

(Step 4) 
AtK =9 StDemSAK =11 AtDemSAK =13 

 

Table 11. Scenario 2 
Kanban Suitability Analysis for part 2 per time-point 

Time-
points 

Step 1 Step 2 Step 3 
Eq.6 Eq.7 Eq.8 

Act.dem. 
to qK  

Sim.dem. to 
DemSA  qK  

Act.dem. to 
DemSA  qK  

1 0.82 0.80 0.80 
2 0.87 0.82 0.86 
3 0.80 0.84 0.79 
4 0.86 0.86 0.85 
5 0.89 0.88 0.88 
6 0.92 0.90 0.91 
7 0.95 0.93 0.94 
8 0.99 0.95 0.97 
9 0.95 0.97 0.93 
10 0.99 0.99 0.97 
11 1.08 1.02 1.07 
12 1.04 1.04 1.03 
13 1.17 1.06 1.15 
14 1.02 1.09 1.00 
15 1.24 1.12 1.22 
16 1.06 1.14 1.05 
17 0.77 1.17 1.17 
18 0.69 1.20 1.20 
19 0.75 0.76 0.76 
20 0.72 0.70 1.68 
21 0.76 0.72 0.74 
22 0.80 0.73 0.71 
23 0.69 0.75 0.75 
24 0.88 0.76 0.78 
25 0.77 0.78 0.67 
26 0.88 0.80 0.87 
27 0.90 0.81 0.75 
28 1.01 0.83 0.86 

29 0.88 0.85 0.89 
30 0.91 0.87 1.00 
31 0.93 0.89 0.86 
32 0.91 0.91 0.89 
33 0.31 0.93 0.91 
34 0.40 0.95 0.89 
35 0.36 0.97 0.97 
36 0.36 0.99 0.99 
37 0.42 0.31 0.31 
38 0.57 0.46 0.39 
39 0.59 0.46 0.35 
40 0.63 0.47 0.36 
41 0.67 0.47 0.42 
42 0.51 0.47 0.56 
43 0.39 0.48 0.58 
44 0.50 0.48 0.62 
45 0.5 0.49 0.66 
46 0.55 0.49 0.50 
47 0.47 0.50 0.38 
48 0.34 0.50 0.49 
49  0.50 0.64 
50  0.51 0.54 
51  0.51 0.46 
52  0.52 0.34 
53  0.52 0.52 
54  0.53 0.53 
>1  

(Step 4) 
AtK =7 StDemSAK =8 AtDemSAK =7 

 

To conclude, a comparison between AtK  and 
AtDemSAK  is made in Step 5. Kanban suitability for 
part 1 in Scenario 2 denotes that Kanban quantity, which 
is calculated by using the ‘traditional’ cD , seems more 

suitable than DemSA  Kanban quantity, since AtK  is 
less than AtDemSAK  (see Table 10). The analysis for 
part 2 denotes that Kanban shares the same suitability, 
since AtK  equals to AtDemSAK  (see Table 11). 

Finally, Step 6 gives the relative change between 
Kanban quantity and DemSA  Kanban quantity by using 
equation (12). The DemSA  Kanban quantity is 
decreased by 3.18% to Kanban quantity for part 1 in 
Scenario 2. The DemSA  Kanban quantity is decreased 
by 1.51% to Kanban quantity for part 2 in Scenario 2. 
 

5. DISCUSSIONS AND CONCLUSIONS 

This paper presented a novel idea of applying SA in 
production issues. SA is a concept that could trigger 
scholars to look a bit deeper to the factors that affect 
demand, simply by reading the numbers and interpreting 
them as market observable events. In essence, this paper 
introduced the above approach that could possibly 
contribute to initiating and guiding a shift of how 
companies perceive, comprehend, and exploit data. 

On the one hand, as regards the fluctuation in the 
‘%error’ this could be explained by a typical product life 
cycle curve, which shows that when a product is mature 
enough then its demand degrades. Thus, although this 
degradation is not detectable by the GM(1,1) model, it 
could, however, interpret the ‘distance’ between the 
actual values and the simulated ones, as a passage from 
the one phase of the product life cycle to the next. Hence, 
we draw a connection between the quantitative indication 
of big errors and the qualitative depiction of product 
demand fluctuations. 
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On the other hand, as regards the Kanban quantity, it 
is not affected by the GM(1,1) model. The logistics 
design procedure can define Kanban quantity either with 
‘traditional’ or simulated cD . Besides, the Kanban 

quantity seems to be quite more accurate than DemSA  
Kanban, and its calculation is not affected by the amount 
of time-points, namely there is no difference between 
Scenario 1 and Scenario 2. The Kanban quantity 
calculation is affected by demand, explained by the fact 
that AtK  is lower than AtDemSAK  for part 1 and equal 
for part 2. Kanban quantity with ‘traditional cD  is good 

enough material handling system for CODP to satisfy 
future demand. Kanban quantity with simulated cD  that 

is calculated by GM(1,10 model needs further 
investigation by more application examples. 

After all, having acknowledged that the proposed 
method is not a panacea, we still argue that it could aid, 
at least as a pilot measure, in taking advantage of the 
lessons learned by the MC company experiences and the 
overabundance of data. 
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